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A B S T R A C T

This paper discusses the continuous effect of the fractional order parameter of the Lü system

where the system response starts stable, passing by chaotic behavior then reaching periodic

response as the fractional-order increases. In addition, this paper presents the concept of syn-

chronization of different fractional order chaotic systems using active control technique. Four

different synchronization cases are introduced based on the switching parameters. Also, the sta-

tic and dynamic synchronizations can be obtained when the switching parameters are functions

of time. The nonstandard finite difference method is used for the numerical solution of the frac-

tional order master and slave systems. Many numeric simulations are presented to validate the

concept for different fractional order parameters.
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Introduction

During the last few decades, fractional calculus has become a
powerful tool in describing the dynamics of complex systems
which appear frequently in several branches of science and

engineering. Therefore fractional differential equations and

their numerical techniques find numerous applications in the
field of viscoelasticity, robotics, feedback amplifiers, electrical

circuits, control theory, electro analytical chemistry, fractional
multi-poles, chemistry and biological sciences [1–12].

The chaotic dynamics of fractional order systems began to

attract a great deal of attention in recent years due to the ease
of their electronic implementations as discussed before [13,14].
Due to the very high sensitivity of these chaotic systems which

is required for many applications, there was a need to discuss
the coupling of two or more dissipative chaotic systems which
is known as synchronization. Chaotic synchronization has been

applied in many different fields, such as biological and physical
systems, structural engineering, ecological models [15,16].
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Pecora and Carroll [15] were the first to introduce the con-
cept of synchronization of two systems with different initial
conditions. Many chaotic synchronization schemes have also

been introduced during the last decade such as adaptive con-
trol, time delay feedback approach [17,18], nonlinear feedback
synchronization, and active control [19]. However, most of

these methods have been tested for two identical chaotic sys-
tems. When Ho and Hung [19] presented and applied the con-
cept of active control method on the synchronization of

chaotic systems, many recent papers investigated this tech-
nique for different systems and in different applications
[20,21]. The synchronization of three chaotic fractional order
Lorenz systems with bidirectional coupling in addition to the

chaos synchronization of two identical systems via linear con-
trol was investigated [22,23]. Moreover, two different frac-
tional order chaotic systems can be synchronized using active

control [24]. The hyper-chaotic synchronization of the frac-
tional order Rössler system which exists when its order is as
low as 3.8 was shown by Yua and Lib [25]. Recently the con-

sistency for the improvement of models based on fractional or-
der differential structure has increased in the research of
dynamical systems [26]. In addition, many researchers have

studied the control of systems in different applications
[27,28], in addition to the circuit and electromagnetic theories
as shown by others [3,4,10–12,29].

Several analytical and numerical methods have been pro-

posed to solve the fractional order differential equations for
example the nonstandard finite difference schemes (NSFDs),
developed by Mickens [30,31] have shown great potential in re-

cent applications [32,33].
There are two aims for this paper, the first aim is to study

the proper fractional order range which exhibits chaotic behav-

ior for the Lü system. More than thirty cases are investigated
for different orders and changing only a single system param-
eter. Stable, periodic and chaotic responses are shown for each

system parameter but with different fractional order ranges.
The second aim is to discuss the active technique for the syn-
chronization of two different fractional order chaotic systems
and using two on/off switches. Based on the proposed tech-

nique, static and dynamic synchronization can be obtained
in four different cases. The numerical solutions of the frac-
tional order for the master, slave and error systems are com-

puted using NSFD.
In ‘Fundamentals of fractional order’ the basic fundamen-

tals of the fractional order will be discussed. ‘Grünwald–Letni-

kov approximation’ will introduce the effect of the fractional
order parameter of the fractional Lü system on the output re-
sponse. The concept of active control using two on/off
switches for the synchronization between two different chaotic

systems will be proposed in ‘Non-standard Discretization’.
Four different static and dynamic synchronization cases will
be introduced in ‘Effect of the fractional order parameter on

the Lü system response’ based on changing the switching
parameters with time. Finally, conclusions are drawn in the
last section.

Fundamentals of fractional order

Although the concept of the fractional calculus was discussed

in the same time interval of integer order calculus, the com-
plexity and the lack of applications postponed its progress till

a few decades ago. Recently, most of the dynamical systems
based on the integer-order calculus have been modified into
the fractional order domain due to the extra degrees of free-

dom and the flexibility which can be used to precisely fit the
experimental data much better than the integer-order model-
ing. For example, new fundamentals have been investigated

in the fractional order domain for the first time and do not ex-
ist in the integer-order systems such as those presented in
[4,6,9–12]. The Caputo fractional derivative of order a of a

continuous function f : R+ fi R is defined as follows:

DafðtÞ � dafðtÞ
dta

¼
1

Cðm�aÞ
R t

0

fðmÞðsÞ
ðt�sÞa�mþ1 ds m� 1 < a < m

dm

dtm
fðtÞ a ¼ m

8<
:

ð1Þ

where m is the first integer greater than a, and C(Æ) is the Gam-
ma function and is defined by:

CðzÞ ¼
Z 1

0

e�ttz�1dt; Cðzþ 1Þ ¼ zCðzÞ ð2Þ

In this section, some basic definitions and properties of the
fractional calculus theory and nonstandard discretization are

discussed.

Grünwald–Letnikov approximation

The Grünwald–Letnikov method of approximation for the
one-dimensional fractional derivative is as follows [34]:

DaxðtÞ ¼ fðt; xÞ ð3Þ

DaxðtÞ ¼ lim
h!0

h�a
Xt=h
j¼0
ð�1Þj

a

j

� �
xðt� jhÞ ð4Þ

where a > 0, Da denotes the fractional derivative. N= [t/h],
and h is the step size. Therefore, Eq. (3) is discretized as
follows:

Xnþ1
j¼0

ca
j xðt� jhÞ ¼ fðtn; xðtnÞÞ; n ¼ 1; 2; 3; . . . ; ð5Þ

where tn = nh and ca
j are the Grünwald–Letnikov coefficients

defined as:

Ca
j ¼ 1� 1þ a

j

� �
ca
j�12; and ca

0 ¼ h�a; j ¼ 1; 2; 3; . . . ð6Þ

Nonstandard discretization

The nonstandard discretization technique is a general scheme
where we replace the step size h by a function u(h). By apply-
ing this technique and using the Grünwald–Letnikov discreti-

zation method, it yields the following relations

xnþ1 ¼
�
Xnþ1
j¼1

ca
j xnþ1�j þ f1ðtnþ1; xnþ1Þ

ca1
0

ð7Þ

where ca1
0 ¼ ðu1ðhÞÞ

�1
are functions of the step size h= Dt,

with the following properties:

u1ðhÞ ¼ hþOðh2Þ; where h! 0 ð8Þ
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