
Author's Accepted Manuscript

Sex differences in the nitrate-nitrite-NO[●] pathway: role of oral nitrate-reducing bacteria

Vikas Kapil, Krishnaraj S Rathod, Rayomand S Khambata, Manpreet Bahra, Shanti Velmurugan, Amandeep Purba, David Watson, Michael R Barnes, William G Wade, Amrita Ahluwalia

PII: S0891-5849(18)31248-6

DOI: https://doi.org/10.1016/j.freeradbiomed.2018.07.010

Reference: FRB13849

To appear in: Free Radical Biology and Medicine

Received date: 25 April 2018 Revised date: 15 June 2018 Accepted date: 18 July 2018

Cite this article as: Vikas Kapil, Krishnaraj S Rathod, Rayomand S Khambata, Manpreet Bahra, Shanti Velmurugan, Amandeep Purba, David Watson, Michael R Barnes, William G Wade and Amrita Ahluwalia, Sex differences in the nitrate-nitrite-NO• pathway: role of oral nitrate-reducing bacteria, *Free Radical Biology and Medicine*, https://doi.org/10.1016/j.freeradbiomed.2018.07.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Sex differences in the nitrate-nitrite-NO* pathway: role of oral nitrate-reducing bacteria

Vikas Kapil^a, Krishnaraj S Rathod^a, Rayomand S Khambata^a, Manpreet Bahra^a, Shanti Velmurugan^a, Amandeep Purba^a, David Watson^a, Michael R Barnes^a, William G Wade^b, Amrita Ahluwalia^a*

^aWilliam Harvey Research Institute, Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK

^bBlizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University
of London, Newark Street, London E1 2AT, UK

*Correspondence to: Prof Amrita Ahluwalia William Harvey Research Institute, Centre for Clinical Pharmacology John Vane Science Centre, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, UK T: 020 7882 8377 E: a.ahluwalia@qmul.ac.uk

Abstract

Oral reduction of nitrate to nitrite is dependent on the oral microbiome and is the first step of an alternative mammalian pathway to produce nitric oxide in humans. Preliminary evidence suggests important sex differences in this pathway. We prospectively investigated sex-differences following inorganic nitrate supplementation on nitrate/nitrite levels and vascular function, and separately examined sex differences in oral nitrate reduction, and oral microbiota by 16S rRNA profiling. At baseline, females exhibit higher nitrite levels in all biological matrices despite similar nitrate levels to males. Following inorganic nitrate supplementation, plasma nitrite was increased to a significantly greater extent in females than in males and pulse wave velocity was only reduced in females. Females exhibited higher oral bacterial nitrate-reducing activity at baseline and after nitrate supplementation. Despite these differences, there were no differences in the composition of either the total salivary microbiota or those oral taxa with nitrate reductase genes. Our results demonstrate that females have augmented oral nitrate reduction that contributes to higher nitrite levels at baseline and also after inorganic nitrate supplementation, however this was not associated with differences in microbial composition (clinicaltrials.gov: NCT01583803).

Download English Version:

https://daneshyari.com/en/article/8264936

Download Persian Version:

https://daneshyari.com/article/8264936

<u>Daneshyari.com</u>