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stimuli including peptide factors and infectious microbes. It is also known as a redox-sensitive
transcription factor activated by reactive oxygen species (ROS). Over the past decades, various
investigators focused on the role of ROS in the activation of NF-xB by cytokines and lipopolysaccharides.
However, recent studies also suggested that ROS have the potential to repress NF-«B activity. Currently, it

Keywords: is not well addressed how ROS regulate activity of NF-xB in a bidirectional fashion. In this paper, we
NF-KB_ ) summarize evidence for positive and negative regulation of NF-xB by ROS, possible redox-sensitive
Reactive oxygen species targets for NF-xB signaling, and mechanisms underlying biphasic and bidirectional influences of ROS on

Endoplasmic reticulum stress

3 NF-xB, especially focusing on a role of ROS-mediated induction of endoplasmic reticulum stress.
Unfolded protein response
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Introduction

The transcription factor nuclear factor-xB (NF-xB) controls
expression of a wide range of genes that regulate immune
responses, embryogenesis and development, cell growth and
proliferation, apoptosis and survival, and stress responses to a
variety of noxious stimuli. The NF-xB network is critical for human
health, and aberrant NF-xB activation contributes to development
of various inflammatory, autoimmune and malignant disorders
including rheumatoid arthritis, atherosclerosis, multiple sclerosis,
inflammatory bowel diseases, and malignant tumors [1-3]. Under-
standing of molecular mechanisms underlying the control of NF-«xB
is essential for development of effective anti-inflammatory agents
as well as efficient chemotherapeutic drugs.

NF-xB is activated by a wide range of external and internal
stimuli including inflammatory cytokines, bacterial components,
ultraviolet (UV) light, and reactive oxygen species (ROS) [4]. The
Rel/NF-xB family consists five major members: p50, p52, p65
(RelA), RelB, and c-Rel. p65, RelB, and c-Rel, but not p50 and
P52, contain C-terminal transactivation domains required for gene
transcription. The Rel/NF-«xB family of molecules forms homodi-
mers or heterodimers and function as transcription factors [5]. In
physiological conditions, NF-xB is sequestered in the cytoplasm by
binding to inhibitory proteins called inhibitors of NF-xB (IxBs).
When cells are stimulated, however, kB kinase (IKK) complexes
including IKKa, IKKB, and NF-xB essential modulator (NEMO, also
called IKKy) are rapidly activated, resulting in phosphorylation and
proteasome-mediated degradation of IkBs [6,7]. The resultant free
NF-«xB translocates into the nucleus, binds to its consensus
sequence, and induces transcription of target genes. Activated
NF-xB also causes production of IxBa, which enters the nucleus,
captures freed NF-xB, and facilitates its export to the cytoplasm for
termination of transcription [4].

There are two major signaling pathways that induce NF-«xB
activation [8]. The first is the canonical pathway (also called
classical pathway) initiated by cytokine receptors [e.g., tumor
necrosis factor receptor (TNFR) and interleukin-1 receptor (IL-
1R)] and pattern recognition receptors (e.g., Toll-like receptors) [9-
11]. These signals activate IKK complexes, especially IKKB and
NEMO, leading to phosphorylation and degradation of IxkBa [8].
The second is the NEMO-independent, noncanonical pathway
(also called alternative pathway). This pathway is triggered
through lymphotoxin B receptor, B cell activating factor receptor
3, and CDA40, causes activation of NF-«xB inducing kinase (NIK), and
induces activation of IKKa homodimers, leading to processing of
p100 into p52 [12-15]. Then p52 forms heterodimer with RelB,
translocates to the nucleus, and induces target genes [8].

In these signaling processes, several investigators suggested
roles of ROS in the activation of NF-xB [16]. ROS are generated
following exposure to cytokines and lipopolysaccharide (LPS) [17],
and treatment with antioxidants blocks activation of NF-xB by these
stimuli [18-20]. ROS such as superoxide anion (O, "), hydrogen
peroxide (H,0;), and hydroxyl radical (OH") are generated in cells
from several different sources including mitochondrial respiratory
chain complexes, radical-generating xanthine/xanthine oxidase,
and plasma membrane NADPH oxidase [21]. O, is the first

reductant generated from oxygen molecules. O, " is converted to
H,0, by mitochondrial superoxide dismutase (SOD), resulting in
diffusion of H,0; to the cytoplasm. In the presence of iron, H,O, is
converted to the highly reactive OH" through the Fenton reaction.
Of note, O,"~ also acts as a reducing agent that facilitates conversion
of oxidized transition metal ions to their reduced forms, leading to
enhancement of the Fenton reaction. Moreover, O,"~ rapidly reacts
with nitric oxide (NO) and converted to a toxic metabolite perox-
ynitrite (ONOO™) [22]. These ROS may cause oxidative damage of
macromolecules including nucleic acids, lipids, and proteins [23,24].
ROS also function as second messengers in a number of signal
transduction pathways including NF-xB signaling [25]. However, the
role of ROS in NF-«xB signaling is not so simple as has been proposed.
In some situations, ROS trigger activation of NF-xB, whereas in other
circumstances, ROS may inhibit NF-xB activity [26]. Currently, it is
not well understood why and how ROS regulate NF-«xB in a
bidirectional fashion. In this paper, we summarize evidence for
positive and negative regulation of NF-xB by ROS, possible redox-
sensitive targets in NF-xB signaling, and mechanisms underlying
phase- and context-dependent influences of ROS on NF-«B.

Phase-dependent regulation of NF-xB by ROS
Activation of NF-xB by ROS in the early phase

A previous review summarized roles of ROS in the activation of
NF-xB [27]. A number of reports showed that ROS (or generators of
ROS) have the potential to activate NF-xB in various cell types, as
summarized in Table 1. However, mechanisms underlying oxida-
tive stress-induced activation of NF-xB are different from cell type
to cell type. In cancer cells, ROS-induced NF-«B activation seems to
be regulated mainly by IKK complexes. Storz and colleagues
reported that, in human cervical cancer cells (HeLa), H,O, induced
phosphorylation of protein kinase D (PKD) and consequent phos-
phorylation of IKKB, leading to activation of NF-xB. They showed
that the activation of PKD by ROS was mediated by both Src and
Abl tyrosine kinases [28,29]. In contrast, Li et al. reported that, in
human breast cancer cells (MCF7), H,0, induced activation of NIK
and NIK-mediated phosphorylation of IKKa, leading to activation
of NF-xB via a noncanonical pathway [30]. Of note, H,0, did not
affect phosphorylation of IKKB, and only the IKKa-dependent
signaling was activated by H,0,. However, Fan et al. reported that,
in HelLa cells, hypoxia/reoxygenation (H/R) induced ROS-mediated
phosphorylation of IkBa at Tyr42 and consequent activation of NF-
kB independently of the IKK pathway. Treatment with an inhibitor
of c¢-Src significantly inhibited H/R-triggered phosphorylation of
IxBa, suggesting involvement of c-Src in H/R-induced, ROS-
mediated activation of NF-«xB [31].

In leukocytes such as T lymphocytes, [xBua is a primary target for
ROS to induce NF-kB signaling. Typically, inflammatory cytokines
such as TNF-a and IL-18 phosphorylate IkBa on Ser32 and Ser36,
leading to its proteasome-mediated degradation [7]. Using leukemic
cells, Gloire et al. reported that H,0, induced IKK-mediated
phosphorylation of IkBa at Ser32 and Ser36 and that it was
dependent on SH2-containing inositol 5-phosphatase 1 (SHIP-1)
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