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Abstract Fully developed laminar mixed convection in a corrugated vertical channel filled with

two immiscible viscous fluids has been investigated. By using a perturbation technique, the coupled

nonlinear equations governing the flow and heat transfer are solved. The fluids are assumed to have

different viscosities and thermal conductivities. Separate solutions are matched at the interface

using suitable matching conditions. The velocity, the temperature, the Nusselt number and the

shear stress are analyzed for variations of the governing parameters such as Grashof number, vis-

cosity ratio, width ratio, conductivity ratio, frequency parameter, traveling thermal temperature

and are shown graphically. It is found that the Grashof number, viscosity ratio, width ratio and

conductivity ratio enhance the velocity parallel to the flow direction and reduce the velocity perpen-

dicular to the flow direction.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University.

1. Introduction

Mixed convection is defined as a heat transfer situation where
both natural convection and forced convection heat transfer
mechanisms interact. In the past thirty years, mixed convection

in a vertical heated channel has received considerable attention
due to its extensive practical applications, including turbine ro-
tor blade internal cooling systems, cooling of nuclear reactors

and electronic components. From a technological point of
view, the study of viscous fluids bounded by corrugated sur-
faces is of special interest and has practical applications in
the cooling of electronic devices and systems, enhancing the

heat transfer efficiency of industrial transport processes. The
problem of viscous flow in a wavy channel was first treated

analytically by Burns and Parks (1967). Later on Goldstein
and Sparrow (1977), O’Brien and Sparrow (1982), Vajravelu
(1989) and Saniei and Dini (1993) studied the flow through a
corrugated channel.

Wang and Vanka (1995) determined the rates of heat trans-
fer for flow through a periodic array of wavy passages.
Malashetty et al. (2001a) studied the magnetoconvective flow

and heat transfer between a vertical wavy wall and a parallel
flat wall. Wang and Chen (2001) analyzed the rate of heat
transfer for flow through a sinusoidal curved channel. A

numerical study of mixed convection heat and mass transfer
along a vertical wavy surface has been carried out by Jang
and Yan (2004). Yao (2006) used finite difference methods to

analyze the problem of natural convection boundary layer flow
along a complex vertical surface represented by two sinusoidal
functions. He found that the total heat-transfer rates for a
complex surface are greater than those for a flat surface. Kuhn
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and Rohr (2008) experimentally investigated mixed convective
flow over a wavy wall.

One geometry of the flow passage that is very simple and
may be used to enhance the exchanger performance is that
formed by wavy walls. Wavy channels are easy to fabricate

and can provide significant heat transfer enhancement if oper-
ated in an appropriate (transitional) Reynolds-number range.
Therefore, wavy passages have been considered in several

earlier studies as a means to enhance heat/mass transfer in
compact exchange devices. Both corrugated and converging-
diverging cross-sections have been studied experimentally

and numerically. An important observation made is that wavy
passages do not provide any significant heat transfer enhance-
ment when the flow is steady. However, if the flow is made un-
steady (either through external forcing or through natural

transitioning to an unsteady state) significant increases in heat
exchange are observed.

In realistic situations, however, the fluid system often con-

sists of two (and possibly more) separate, immiscible liquids,
a layer of one liquid overlying a layer of another liquid. The
problem formulation now contains additional dynamical

ingredients such as the interfacial stresses and the
deformation of the interface shape. Also, a multi-layered li-
quid arrangement provides an improved model for the buoy-
ancy-driven convection process in growing high-quality

crystals.
The application of the two-fluid model is dependent on the

presumed interface shape (either plane or curved) and on the

availability of reliable closure relations for the wall shear
and interfacial shear stresses (averaged over the corresponding

wetted perimeter) in terms of the local/instantaneous holdup
and velocities. These closure relations should correctly repre-

sent the effects of the system’s parameters (e.g. fluids’ flow
rates and physical properties).

Meyer and Garder (1954) were the first authors to publish a

paper on the mechanics of two immiscible fluids in porous
media. Loharsabi and Sahai (1998) analyzed the flow of two
immiscible fluids in a parallel plate channel assuming the con-

tinuity of velocity and thermal equilibrium at the interface.
Several researchers have assumed that separated two-phase
flow can be well represented by the superimposition of two sin-

gle-phase flows separated by a flat interface. The first exact
solution for the fluid flow in the interface region was presented
in Vafai and Kim (1990). In that study, the shear stress in the
fluid and the porous medium were taken to be equal at the

interface region. Using this assumption, Malashetty and Leela
(1992), Malashetty et al. (2001b, 2004), Umavathi et al. (2005,
2007, 2008a,b) and Prathap Kumar et al. (2011a,b) studied the

flow and heat transfer of different immiscible fluids through
channels. Most recently Umavathi and Shekar (2011, 2012)
studied the mixed convection flow of immiscible fluids in a ver-

tical corrugated channel.
In the literature, numerous experimental and theoretical

studies have been reported concerning the heat transfer in
the corrugated surface for the one-fluid model. Keeping in

view the various applications of the two-fluid model, we were
motivated to analyze the flow nature of two immiscible fluids
in a vertical corrugated channel for unsteady flow. The temper-

ature and velocity distributions are simulated by the perturba-
tion method.

Nomenclature

a amplitude

CðjÞp specific heat at constant pressure
Cp ratio of specific heat at constant pressure
g acceleration due to gravity
Gr Grashof number ðhð1Þ

3

gbð1ÞDT=mð1Þ
2 Þ

h width ratio (h(2)/h(1))
K(j) thermal conductivity
k thermal conductivity ratio (K(2)/K(1))

m viscosity ratio (l(1)/l(2))
Nu Nusselt number
P(j) pressure

ps static pressure
p(j) dimensionless pressure
Pr Prandtl number Cð1Þp lð1Þ=Kð1Þ

� �
r density ratio (q(2)/q(1))
T(j) temperature
T*(j),/(j) dimensionless temperature
Ts static temperature

t time
U(j),V(j) velocities along X and Y directions
u(j),v(j) dimensionless velocities

X(j),Y(j) space co-ordinates
x(j),y(j) dimensionless space co-ordinates

Greek symbols

b(j) coefficient of thermal expansion
b ratio of coefficient of thermal expansion (b(2)/b(1))
e dimensionless amplitude parameter (a/h(1))
k wave length

k(j) dimensionless wave number (k(j)/h(j))
l(j) viscosity
m(j) kinematic viscosity (l(j)/q(j))
h traveling thermal temperature
q(j) density
q0 static density

s skin friction
x frequency parameter
w stream function

Superscript

j= 1,2 where 1 and 2 refer quantities for the fluids in re-
gion-I and region-II respectively.

Subscript

0 mean part

1 perturbed part
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