
ORIGINAL ARTICLE

Solving Abel integral equations of first kind via

fractional calculus

Salman Jahanshahi a, Esmail Babolian a, Delfim F.M. Torres b,*,

Alireza Vahidi c

a Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
b Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University

of Aveiro, 3810-193 Aveiro, Portugal
c Department of Mathematics, Shahre Rey Branch, Islamic Azad University, Tehran, Iran

Received 30 August 2014; accepted 29 September 2014

Available online 12 October 2014

KEYWORDS

Abel integral equation;

Singular integral equations;

Caputo fractional deriva-

tives;

Fractional integrals

Abstract We give a new method for numerically solving Abel integral equations of first kind. An

estimation for the error is obtained. The method is based on approximations of fractional integrals

and Caputo derivatives. Using trapezoidal rule and Computer Algebra SystemMaple, the exact and

approximation values of three Abel integral equations are found, illustrating the effectiveness of the

proposed approach.
ª 2014 The Authors. Production and hosting by Elsevier B.V. on behalf of King SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Consider the following generalized Abel integral equation of
first kind:

fðxÞ ¼
Z x

0

kðx; sÞgðsÞ
ðx� sÞa ds; 0 < a < 1; 0 6 x 6 b; ð1:1Þ

where g is the unknown function to be found, f is a well
behaved function, and k is the kernel. This equation is one
of the most famous equations that frequently appears in many
physical and engineering problems, like semi-conductors, heat

conduction, metallurgy and chemical reactions (Gorenflo,
1996; Gorenflo and Vessella, 1991). In experimental physics,
Abel’s integral equation of first kind (1.1) finds applications

in plasma diagnostics, physical electronics, nuclear physics,
optics and astrophysics (Knill et al., 1993; Kosarev, 1980).
To determine the radial distribution of the radiation intensity

of a cylinder discharge in plasma physics, for example, one

needs to solve an integral Eq. (1.1) with a ¼ 1
2
. Another exam-

ple of application appears when one describes velocity laws of

stellar winds (Knill et al., 1993). If kðx; sÞ ¼ 1
Cð1�aÞ, then (1.1) is

a fractional integral equation of order 1� a (Podlubny, 1999).

This problem is a generalization of the tautochrone problem of
the calculus of variations, and is related with the born of frac-
tional mechanics (Riewe, 1997). The literature on integrals and
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derivatives of fractional order is now vast and evolving (see,

e.g., Diethelm et al., 2005; Diethelm and Freed, 2002;
Tarasov, 2013; Tenreiro Machado et al., 2011; Wang et al.,
2011). The reader interested in the early literature, showing

that Abel’s integral equations may be solved with fractional
calculus, is referred to Gel’fand and Shilov (1964). For a con-
cise and recent discussion on the solutions of Abel’s integral
equations using fractional calculus see Li and Zhao (2013).

Many numerical methods for solving (1.1) have been devel-
oped over the past few years, such as product integration
methods (Baker, 1977; Baratella and Orsi, 2004), collocation

methods (Brunner, 2004), fractional multi step methods
(Lubich, 1985, 1986; Plato, 2005), backward Euler methods
(Baker, 1977), and methods based on wavelets (Lepik, 2009;

Saeedi et al., 2011a,b). Some semi analytic methods, like the
Adomian decomposition method, are also available, which
produce a series solution (Bougoffa et al., 2013). Unfortu-
nately, the Abel integral Eq. (1.1) is an ill-posed problem.

For kðx; sÞ ¼ 1
Cð1�aÞ, Gorenflo (1996) presented some numerical

methods based on fractional calculus, e.g., using the Grun-
wald–Letnikov difference approximation

Daf ’ h�a
Xn
r¼0
ð�1Þr

a

r

� �
fðx� rhÞ: ð1:2Þ

If f is sufficiently smooth and vanishes at x 6 0, then formula

(1.2) has an accuracy of order Oðh2Þ, otherwise it has an accu-
racy of order OðhÞ. On the other hand, Lubich (1985, 1986)
introduced a fractional multi-step method for the Abel integral

equation of first kind, and Plato (2005) considered fractional
multi-step methods for weakly singular integral equations of
first kind with a perturbed right-hand side. Liu and Tao
(2007) solved the fractional integral equation, transforming it

into an Abel integral equation of second kind. A method based
on Chebyshev polynomials is given in Avazzadeh et al. (2011).
Here we propose a method to solve an Abel integral equation

of first kind based on a numerical approximation of fractional
integrals and Caputo derivatives of a given function f belong-
ing to Cn½a; b� (see Theorem 4.2).

The structure of the paper is as follows. In Section 2 we
recall the necessary definitions of fractional integrals and
derivatives and explain some useful relations between them.
Section 3 reviews some numerical approximations for frac-

tional integrals and derivatives. The original results are then
given in Section 4, where we introduce our method to approx-
imate the solution of the Abel equation at the given nodes and

we obtain an upper bound for the error. In Section 5 some
examples are solved to illustrate the accuracy of the proposed
method.

2. Definitions, relations and properties of fractional operators

Fractional calculus is a classical area with many good books

available. We refer the reader to Malinowska and Torres
(2012) and Podlubny (1999).

Definition 2.1. Let a > 0 with n� 1 < a 6 n; n 2 N, and
a < x < b. The left and right Riemann–Liouville fractional

integrals of order a of a given function f are defined by

aJ
a
x fðxÞ ¼

1

CðaÞ

Z x

a

ðx� tÞa�1fðtÞdt

and

xJ
a
b fðxÞ ¼

1

CðaÞ

Z b

x

ðt� xÞa�1fðtÞdt;

respectively, where C is Euler’s gamma function, that is,

CðxÞ ¼
Z 1

0

tx�1e�tdt:

Definition 2.2. The left and right Riemann–Liouville fractional
derivatives of order a > 0, n� 1 < a 6 n; n 2 N, are defined by

aD
a
x fðxÞ ¼

1

Cðn� aÞ
dn

dxn

Z x

a

ðx� tÞn�a�1
fðtÞdt

and

xD
a
b fðxÞ ¼

ð�1Þn

Cðn� aÞ
dn

dxn

Z b

x

ðt� xÞn�a�1
fðtÞdt;

respectively.

Definition 2.3. The left and right Caputo fractional derivatives

of order a > 0, n� 1 < a 6 n; n 2 N, are defined by

C
a D

a

x fðxÞ ¼
1

Cðn� aÞ

Z x

a

ðx� tÞn�a�1
fðnÞðtÞdt

and

C
xD

a

b fðxÞ ¼
ð�1Þn

Cðn� aÞ

Z b

x

ðt� xÞn�a�1
fðnÞðtÞdt;

respectively.

Definition 2.4. Let a > 0. The Grunwald–Letnikov fractional

derivatives are defined by

DafðxÞ ¼ lim
h!0

h�a
X1
r¼0
ð�1Þr

a

r

� �
fðx� rhÞ

and

D�afðxÞ ¼ lim
h!0

ha
X1
r¼0

a

r

� �
fðx� rhÞ;

where

a

r

� �
¼ aðaþ 1Þðaþ 2Þ � � � ðaþ r� 1Þ

r!
:

Remark 2.5. The Caputo derivatives (Definition 2.3) have
some advantages over the Riemann–Liouville derivatives (Def-
inition 2.2). The most well known is related with the Laplace

transform method for solving fractional differential equations.
The Laplace transform of a Riemann–Liouville derivative
leads to boundary conditions containing the limit values of

the Riemann–Liouville fractional derivative at the lower termi-
nal x ¼ a. In spite of the fact that such problems can be solved
analytically, there is no physical interpretation for such a type
of boundary conditions. In contrast, the Laplace transform of

a Caputo derivative imposes boundary conditions involving
integer-order derivatives at x ¼ a, which usually are acceptable
physical conditions. Another advantage is that the Caputo

derivative of a constant function is zero, whereas for the Rie-
mann–Liouville it is not. For details see Sousa (2012).
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