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Abstract A new type of exact solutions of the full 3 dimensional spatialHelmholtz equation for the

case of non-paraxial Gaussian beams is presented here.

We consider appropriate representation of the solution for Gaussian beams in a spherical coor-

dinate system by substituting it to the full 3 dimensional spatial Helmholtz equation.

Analyzing the structure of the final equation, we obtain that governing equations for the compo-

nents of our solution are represented by the proper Riccati equations of complex value, which has

no analytical solution in general case.

But we find one of the possible exact solutions which is proved to satisfy to such equations for

Gaussian beams.
ª 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The full 3-dimensional spatial Helmholtz equation provides
solutions that describe the propagation of waves over space

(e.g., electromagnetic waves) under proper boundary condi-
tions; it should be presented in a spherical coordinate system
R, h, u as given below (Sommerfeld, 1949; Serway, 2004):

DAþ k2A ¼ 0; ð1:1Þ

- where D is the Laplacian, k is the wavenumber, and A is the
amplitude. So, the derivation advanced in this manuscript
starts with the scalar Helmholtz equation expressed in

spherical co-ordinates.

Besides, in spherical coordinate system (Kamke, 1971):
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@R2
þ 2
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@2A
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Special solutions to this equation have generated con-
tinuing interest in the optical physics community since the dis-
covery of unusual non-diffracting waves such as Bessel and
Airy beams (Alonso and Bandres, 2014a, 2014b, 2012).

Let us search for solutions of Eq. (1.1) in a classical form of
Gaussian beams (Yi-Qing, 2013; Tagirdzhanov et al., 2011;
Chen et al., 2002), which could be presented in Cartesian

coordinate system as given below (Svelto, 2010):

A ¼ a � w0

wðzÞ exp �
x2 þ y2

w2ðzÞ � ikz� ik
x2 þ y2

2rðzÞ þ ifðzÞ
� �

- where w(z), r(z), f(z) – are the real functions, describing
appropriate parameters of a beam; w(z) is the beam waist size,
r(z) is a wavefront radius of curvature and f (z) is the Gouy’s
phase shift properly (Svelto, 2010).
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The classical form of Gaussian beams above could be also
represented as given below

exp i fðzÞ � kzþ i � ln wðzÞ þ i

w2ðzÞ �
k

2RðzÞ

� �
� ðx2 þ y2Þ

� �� �

¼ exp i pðzÞ þ x2 þ y2

2qðzÞ

� �� �

- where p(z) is the complex phase-shift of the waves during
their propagation along the z axis; q(z) is the proper complex
parameter of a beam, which is determining Gaussian profile
of a wave in the transverse plane at position z.

Besides, let us also note that at the left part of the
expression above we express the term (1/w(z)) in a form for
Gaussian beams, as exp (i2 ln w(z)) = exp (�ln w(z)).

The right part of the expression above could be transformed
in a spherical coordinate system to the form given below:

A ¼ a � exp i pðR; hÞ þ R2 � sin2 h
2qðR; hÞ

� �� �
ð�Þ

The solution (*) is additionally assumed to be independent

of the azimuthal co-ordinate to observe it under well-known
paraxial approximation (Svelto, 2010) also.

Then having substituted the expression (*) into Eq. (1.1),
we should obtain (h „ 0):
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2. Exact solutions

Let us re-designate appropriate term in (*) as given below:

fðR; hÞ ¼ pðR; hÞ þ R2 � sin2 h
2qðR; hÞ :

In such a case, Eq. (1.2) could be transformed as shown
below (h „ 0):
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ð2:1Þ

Thus, all possible solutions for representing Gaussian beams in

a form (*) are described by the Eq. (2.1).
But we should especially note that during the process of

obtaining a solution (for example, if we are simply assuming

a special eikonal solution (Svelto, 2010; Milonni and Eberly,

2010) to the Helmholtz equation), some of main features of
the solution could be reduced; so, such a solution need not
have any relation to Gaussian form (*).

Besides, one of the obvious solutions of PDE-equations (2.1):

fðR; hÞ ¼ f 1ðRÞ þ f 2ðhÞ ð��Þ

- where f 1 (R), f 2 (h) – are the functions of complex value.
Let us assume as given below:

@2fðR; hÞ
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¼ C ð2:2Þ

- where C – is a constant of complex value. For such a case,
Eq. (2.1) could be reduced as shown below (h „ 0):
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3. Presentation of exact solution

Under assumption (**), Eq. (2.2) could be represented as

shown below:

df2
dh

� �
¼ yðhÞ ) y0ðhÞ ¼ �i � y2 � cot h � yþ C;

yðhÞ ¼ csc h � uðhÞ ) u0ðhÞ ¼ �ði � csc hÞ � u2 þ C � sin h;

ð3:1Þ

- where the last equation is known to be the Riccati ODE

(Kamke, 1971), which has no solution in general case. But if
C= 0, Eq. (3.1) has a proper solution (C0 = const):

u0ðhÞ ¼ �ði � csc hÞ � u2; uðhÞ ¼ 1

ðC0 þ i �
R
csc hdhÞ )

df2
dh ¼

csc h
ðC0 þ i �

R
csc hdhÞ ðC0 ¼ 0Þ ) f2 ¼ �i � lnð

Z
csc hdhÞ

ð3:2Þ

Besides, Eq. (2.3) could be presented as given below
(C= 0):

df1
dR

� �
¼ y1ðRÞ ) y01ðRÞ ¼ �i � y21 � 2

R
y1 � C

R2 � i � k2
� �

;

f1ðRÞ ¼
R
y1ðRÞdR:

ð3:3Þ

- where the last Riccati ODE (3.3) has a proper solution as
shown below if C= 0 (see Kamke, 1971, the case 1.104).

Indeed, let us assume (k „ 0, R „ 0):

y1 ¼ u1 þ i
R
; y01ðRÞ ¼ �i � y21 � 2

R
y1 þ i � k2

) u01ðRÞ ¼ �i � u21 þ i � k2 )
R

du1
k2�u2

1

¼ i � R

)
u1 ¼ k � tanhði � k � RÞ; ji � tanðk � RÞj < 1;

u1 ¼ k � cothði � k � RÞ; ji � tanðk � RÞj > 1;

�
- then, we obtain:

f1 ¼ �i � ln coshði � k � RÞ þ i � ln R; jk � Rj < p=4;

f1 ¼ �i � ln sinhði � k � RÞ þ i � ln R; jk � Rj > p=4:

�
ð3:4Þ

Taking into consideration the expression (**) for the
solution as well as (3.2)–(3.4), let us finally present a new
type of non-paraxial solution, which is proved to satisfy the

Helmholtz equation (1.1), as shown below:
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