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Abstract In this paper, Exp-function and its modification methods have been applied to obtain an

exact solution of the nonlinear Drinfeld–Sokolov system (DS). Modification of the method was first

introduced by the same authors. The prominent merit of this method is to facilitate the process of

solving systems of partial differential equations. These methods are straightforward and concise by

themselves; moreover, their applications are promising to obtain exact solutions of various partial

differential equations. It is shown that the methods, with the help of symbolic computation, provide

very effective and powerful mathematical tools for solving such systems.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Mathematical modelings of many real phenomena lead to a

non-linear ordinary or partial differential equations in various
fields of physics and engineering. There are some methods to
obtain approximate or exact solutions of these kinds of equa-

tions, such as the tanh method (Wazwaz, 2005; Malfliet and
Hereman, 1996), sine–cosine method (Wazwaz, 2006), homot-
opy perturbation method (Biazar and Ghazvini, 2007; He,

2005), variational iteration method (He, 1999; He, 2000),

Adomian decomposition method (Biazar et al., 2003), and
many others (Wang, 1996; Abdou, 2007; Wang and Zhang,

2005; Wang et al., 2008). Most recently, a novel approach
called the Exp-function method (He and Wu, 2006; Zhang,
2007; Biazar and Ayati, 2008) has been developed to obtain

solutions of various nonlinear equations. The solution proce-
dure of this method, by the help of any mathematical pack-
ages, say Matlab or Maple, is of utter simplicity. The
modified version of this method was first presented in Biazar

and Ayati (2009) by current authors. There, it was used to
solve the system of partial differential equation directly and
without change to ordinary differential equation.

In this paper, the nonlinear Drinfeld–Sokolov system is
considered, in the following form, and is solved by the Exp
function method

ut þ ðv2Þx ¼ 0;

vt � avxxx þ 3buxvþ 3cuvx ¼ 0:

�
ð1Þ

where a, b, and c are constants. This system was introduced by

Drinfeld and Sokolov as an example of a system of nonlinear
equations possessing Lax pairs of a special form (Goktas and
Hereman, 1997; Wazwaz, 2006).
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Let us introduce a complex variable n, as follows

n ¼ kxþ wt: ð2Þ

So, Eq. (1) turns to the following system of ordinary different
equation,

wu0 þ kðv2Þ0 ¼ 0;

wv0 � akv000 þ 3bku0vþ 3ckuv0 ¼ 0:

(
ð3Þ

where k and w are constant to be determined. A simplified
form of the first equation will be derived by taking integral
from both sides of that. Let us consider the integral constant

zero.

u ¼ �k v
2

w
: ð4Þ

Substituting Eq. (4) into the second equation of the system and
integrating lead to

w2v� awk3v00 � ð2bþ cÞk2v3 ¼ 0: ð5Þ

where c, d, p, and q are positive integers which could be freely

chosen, am for m= �d, . . . ,c and bn for n = �q, . . . ,p are un-
known constants to be determined. To find the values of c and
p, we balance the linear terms of the highest order in Eq. (8)

with the highest order nonlinear terms.
Similarly to find out the values of d and q, we balance the

linear terms of the lowest order in Eq. (8) with the lowest order
nonlinear terms.

3. Exp function method for the DS system

The Exp function method as well addressed in He and Wu

(2006), Zhang (2007), Biazar and Ayati (2008), and in this part
it will be applied to obtain the solution of the Drienfeld–Soko-
lov system.

We assume that the solution of Eq. (5) can be expressed in
the form shown in the following form

uðnÞ ¼ ac expðcnÞ þ � � � þ a�d expð�dnÞ
bp expðpnÞ þ � � � þ b�q expð�qnÞ

; ð6Þ

In order to determine the constants c and p, we balance the lin-
ear term of the highest order in Eq. (5) with the highest order
nonlinear term. By simple calculation, we have

v00 ¼ c1 exp½ð3pþ cÞn� þ � � �
c2 exp½4pn� þ � � �

; ð7Þ

and

v3 ¼ c3 exp½3cn� þ � � �
c4 exp½3pn� þ � � �

¼ c3 exp½ðpþ 3cÞn� þ � � �
c4 exp½4pn� þ � � �

: ð8Þ

By balancing the highest order terms of Exp-functions in Eqs.
(7) and (8), we have

cþ 3p ¼ 3cþ p; ð9Þ

which leads to the result:

p ¼ c: ð10Þ

Similarly, we balance the lowest order terms in Eq. (5) to deter-
mine values of d and q, we obtain:

d ¼ q: ð11Þ

It is possible to choose the values of c and d, too.

3.1. The choice of p = c = 1, and q = d = 1

We choose p= c = 1, and q = d= 1, the trial function, Eq.

(6) converts to the following form

vðnÞ ¼ a1 expðnÞ þ a0 þ a�1 expð�nÞ
b1 expðnÞ þ b0 þ b�1 expð�nÞ : ð12Þ

In the case b1 „ 0 Eq. (12) can be simplified as

vðnÞ ¼ a1 expðnÞ þ a0 þ a�1 expð�nÞ
expðnÞ þ b0 þ b�1 expð�nÞ : ð13Þ

Substituting Eq. (13) into Eq. (5), and taking the coefficients of
exp(nn) in each term zero yield to a set of algebraic equations
for a1, a0, a�1, b0, b�1, k, and w. Solving this system of alge-

braic equations by the aid of Maple, or via any others, leads to

a�1 ¼ 0; a0 ¼ a0; a1 ¼ 0; b�1 ¼
1

8

a20ð2bþ cÞ
k4a2

; b0

¼ 0; k ¼ k; w ¼ ak3: ð14Þ

where a0 and k are free parameters. Substituting Eq. (14) into
Eq. (13), we obtain the following exact solution

vðx; tÞ ¼ a0

expðkxþ ak3tÞ þ 1
8

a2
0
ð2bþcÞ
k4a2

expð�kx� ak3tÞ
: ð15Þ

If we set a0 ¼ 2
ffiffi
2
p

k2affiffiffiffiffiffiffi
2bþc
p ; and r= �ak2, Eq. (15) reduces to

vðx; tÞ ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2bþ c

r
sec h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r
a
ðx� rtÞ

r� �
: ð16Þ

For a0 ¼ 2
ffiffi
2
p

k2affiffiffiffiffiffiffi
2bþc
p i; and r= �ak2, we get

vðx; tÞ ¼ �ir
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2bþ c

r
csc h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r
a
ðx� rtÞ

r� �
: ð17Þ

These solutions are the same as the Wazwaz’s solution Waz-
waz’s (2006) solution.

3.2. The choice of p = c = 2, and q = d = 1

If we choose p = c= 2, and q = d = 1, Eq. (6) takes the fol-
lowing form:

vðnÞ ¼ a2 expð2nÞ þ a1 expðnÞ þ a0 þ a�1 expð�nÞ
expð2nÞ þ b1 expðnÞ þ b0 þ b�1 expð�nÞ : ð18Þ

Proceeding in a similar way as illustrated in Section 3.1, we can

identify parameters, a2, a1, a0, a�1, b1, b0, b�1, w, and k in Eq.
(39) as the following

a2 ¼ 0; a1 ¼ a1; a0 ¼ 0; a�1 ¼ 0; b1 ¼ 0;

b0 ¼
1

8

a21ð2bþ cÞ
k4a2

; b�1 ¼ 0; w ¼ ak3; k ¼ k: ð19Þ

a2 ¼ � 1
2

ak2ffiffiffiffiffiffiffi
2bþc
p ; a1 ¼ �ð1þ

ffiffiffi
2
p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� a0affiffiffiffiffiffiffi

2bþc
p

q
k; a0 ¼ a0;

a�1 ¼ 0; b1 ¼ 0; b0 ¼ � 2a0
k2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2bþ c
p

;

b�1 ¼ 0; w ¼ � 1
2
ak3; k ¼ k:

ð20Þ

Substituting Eqs. (19) and (20) into Eq. (18), we obtain the fol-
lowing exact solutions;
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