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Abstract We investigate the solutions for a fractional diffusion equation subjected to boundary

conditions which can be connected to adsorption–desorption processes. The analytical solutions

were obtained using the Green function approach and showed an anomalous spreading which

can be connected to an anomalous diffusion.
� 2015 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Diffusion is one of the most important phenomena present in

nature which has been investigated using several approaches.
In general, the description employs stochastic differential
equations which are connected to Markovian processes
(Crank, 1975) and, consequently, leads us to a linear depen-

dence for the mean square displacement, i.e., h(x � hxi)2i / t.
However, the experimental scenarios characterized by fractal-
ity (ben-Avraham and Havlin, 2005; Weigel et al., 2011),

molecular diffusion in vivo (Leijnse et al., 2012; Robson

et al., 2013), molecular crowding (Sokolov, 2012), chemotaxis
diffusion (Langlands and Henry, 2010), and active transport
(Caspi et al., 2000; Bruno et al., 2009; Brangwynne et al.,

2009; Weber et al., 2012) have evidenced the limitations of
the Markovian processes in describing situations where mem-
ory effects, long-range correlations, and long-range interac-

tions are present. In order to overcome the limitations
present in the usual approach several extensions, for example,
involving continuous time random walk (Klafter and Sokolov,

2011), generalized Langevin equations, and fractional diffu-
sion equations (Leijnse et al., 2012; Hilfer et al., 2004;
Metzler and Klafter, 2000, 2004; Eliazar and Shlesinger,
2013; Bressloff and Newby, 2013; Condamin et al., 2008;

Podlubny, 1999), have been investigated to establish the
appropriated links between the models and the experimental
results. It is also worth mentioning that Cantor space-time

has been used to analyse the diffusion equation and the
reported results show the dependence on the fractal dimension
order of the differential equation on Cantor space-time
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(Yang et al., 2013; Yang et al., 2015a,b; Yan, 2015). In these
extensions, one of the main points is the nonlinear time depen-
dence exhibited by the mean-square displacement which, in

general, is characterized by h(x � hxi)2i / ta, where a> 1
and a< 1 correspond to superdiffusion and subdiffusion,
respectively (Caputo et al., 2008; Caputo and Cametti, 2009;

Kosztolowicz et al., 2012). Here, we investigate the solutions
for the fractional diffusion equation (Jiang et al., 2013;
Barbero and Evangelista, 2006; Garrod, 1995; Lyklema, 1993)
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where Kc is the diffusion coefficient, F is an external force
which represents a constant field acting on the system, and
fractional time operator is the Riemann–Liouville with
0 < c < 1. For c = 1 Eq. (1) recovers the usual form of the

diffusion equation with a constant external force. This equa-
tion is subjected to the boundary conditions: q(1, t) = 0,

jsqð0; t0Þ ¼ s
d

dt
C0ðtÞ þ C0ðtÞ ð2Þ

where j is connected to the characteristics of the surface and

C0ðtÞ þ
Z 1

0

dx0 qðx0; tÞ ¼ const: ð3Þ

In Eq. (2), C0(t) gives the quantity of particles sorbed by the
surface, j represents the sorption rate of the particles from the
bulk to the surface, and s is the relaxation time connected with

the desorption process of particles from the surface to the
bulk. The quantity js has the dimension of length and repre-
sents a thickness which may be related to the interaction of

the surface with particles present in the bulk (Garrod, 1995;
Lyklema, 1993). Also, Eq. (3) implies that the number of par-
ticles in the system is conserved, independently of the nature of

surface effects that may occur. In particular, it can be con-
nected to the condition
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where J(x, t) is the current density. Some changes in Eq. (3) by
incorporating source or sink terms (Lenzi et al., 2010) are

necessary when the processes present in the system lead us to
a non-conservation number of particles.

2. Diffusion equation and adsorption–desorption

Let us start our discussion concerning the solutions for Eq. (1)
and the implications of the sorption phenomenon on the sur-

face present at x = 0. For this, we first apply the Laplace
transform and, after, use the Green function approach to
investigate the behavior of this system. Following, in the

Laplace domain, it can be written as

Kcs
1�c @2

@x2
qðx; sÞ � s1�cF

@

@x
qðx; sÞ � sqðx; sÞ ¼ �uðxÞ; ð6Þ

where the initial condition q(x, 0) = u(x) was considered,
subjected to

jsqð0; sÞ ¼ ð1þ ssÞC0ðsÞ � C0ð0Þ ð7Þ
and Eq. (3). The presence of C0(0) in the previous equation
shows that the surface may initially contain particles which

for t> 0 can be released to the bulk. A similar situation
involving desorption phenomenon can be found in the phar-
maceutical scenario concerning the behavior of the drug
release in a living organism. In particular, a better understand-

ing of how the system behaves in conditions due to geometry,
drug concentration, and drug solubility is important to the
development of medications (Siepmann and Siepmann, 2008,

2012; Siepmann and Peppas, 2001). In terms of the Green
function approach, the solution for Eq. (6) can formally be
written as

Figure 1 (a and b) shows the behavior of the Green function. (a) Shows the time evolution of the Green function for c = 1/2 for three

different times to illustrate the effect of the external force. (b) Illustrates the behavior of the Green function for different values of c. For
simplicity, Kc = 1 and F = 1.
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