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Abstract The phenomenon of stream–aquifer interaction was investigated via mathematical mod-

eling using the Boussinesq equation. A new approximate solution of the one-dimensional Bous-

sinesq equation is presented for a semi-infinite aquifer when the hydraulic head at the source is

an arbitrary function of time. The differential equations were solved using the method of Homot-

opy Perturbation. The simplicity and accuracy of the approximation are compared with ‘‘exact’’

solution and illustrated numerically and graphically. The results reveal that the HPM is very effec-

tive and simple and provides highly accurate solutions for nonlinear differential equations.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

The study of stream–aquifer hydraulics is of great interest as
several flow and contaminant problems can be modeled,

understood and quantified. It is an important problem in
studying of alluvial aquifer. Alluvial valley aquifers are

hydraulically connected to their adjacent channels and ex-
change flow through the streambed (Perkins and Koussis,
1996). The connection causes ground water levels in these sys-

tems to fluctuate with respect to the other. Small changes in the
stream elevation can cause a large variation in the groundwa-
ter elevation in the aquifer. If the stream stage increases over a
short period of time, a flow reversal between the channel and

aquifer will occur as a result of a change in the hydraulic gra-
dient (Workman et al., 1997). A flood wave is then propagated
into the aquifer and increases bank storage. While the stream

is returning to normal flows, the bank storage is released. The
quantification of the hydraulics of the stream–aquifer in an
alluvial valley require a good knowledge of the controlling in-

put hydro-geological parameters, such as hydraulic conductiv-
ity, specific yield, recharge, as well as boundary conditions
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(Srivastava et al., 2006). Alluvial valley aquifers pose some

interesting boundary conditions. One side of the flow domain
is the river source/sink, which is fluctuating. As a result of the
alluvial valley formation, the other side of the flow domain is
the valley wall, which is a no flow boundary condition. The

spread of contaminants in stream–aquifer systems from the
river to the aquifer or from the aquifer to the river is also of
concern (Serrano et al., 2007).

The hydraulics of the stream–aquifer system could be stud-
ied via the solution of the Laplace equation subject to a non-
linear free-surface boundary condition, and time-dependent

river boundary conditions. In this way, the groundwater flow
in an unconfined aquifer may be approximately modeled by
the nonlinear Boussinesq equation, assuming Dupuit’s hypoth-

esis of zero resistance to vertical flow is valid, to be a viable
alternative to the use of Laplace’s equation. With the Bous-
sinesq equation, the vertical coordinate does not exist, and
the free-surface boundary condition is not needed (Serrano

and Workman, 1998). The result is a simplified model where
the effect of time-dependent river boundary conditions can
easily be incorporated into the analysis. Solutions of the Bous-

sinesq equation are applied in catchment hydrology and base
flow studies as well as agricultural drainage problems and con-
structed, subsurface wetlands (Lockington et al., 2000).

The governing equation for one-dimensional, lateral,
unconfined groundwater flow similar to the Fig. 1 with Dupuit
assumptions is the Boussinesq equation (Bear, 1979):
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where h(x,t) is the hydraulic head (m); K is the aquifer hydrau-
lic conductivity (m/day); S is the aquifer specific yield;H1(t) and

H2(t) are the time fluctuating heads at the left and right bound-
aries, respectively; x is the spatial coordinate (m); lx is the hor-
izontal dimension of the aquifer (m); t is the time coordinate

(day); and H0(x) is the initial head across the aquifer (m).
Until recently, analytical solutions of nonlinear partial dif-

ferential equations were rare, due to the lack of systematic

solution methods. Next section is a very brief review on some
analytical methods for this class of equations. One of the most
beneficent of these methods is the Homotopy Perturbation
Method (HPM). In this paper, we solve the Boussinesq equa-

tion by means of HPM and then compare the obtained results
with exact solution.

2. Analysis of the Homotopy Perturbation Method

Nonlinear phenomena play a crucial role in applied mathemat-

ics and physics. Although it is very easy for us now to find the
solutions of some problems by means of computers, it is still
rather difficult to solve nonlinear problems either numerically
or theoretically or obtaining an exact solution for these prob-

lems. So, it is often more useful to have an approximate closed
form solution to describe a nonlinear problem. In recent dec-
ades, numerical analysis and the approximate methods have

been developed considerably for nonlinear partial equations.
More recently, some promising analytical techniques have
been proposed, such as Lindstedt–Poincaré (He, 2002b,c),

Parameter-Expanding (Shou and He, 2007; Ganji et al.,
2009a), Parameterized Perturbation (He, 1999), Harmonic Bal-
ance (Telli and Kopmaz, 2006; Gottlieb, 2006), Linearized Per-

turbation (He, 2003), Energy Balance (He, 2002a; Momeni
et al., 2010; Ganji et al., 2009), Variational Approach (Xu,
2008; He, 2004; Ganji et al., 2008), Max–Min (Babazadeh
et al., 2010; Ibsen et al., 2010), Exp-Function (Ganji et al.,

2009b; Mohyud-Din et al., 2010), Amplitude–Frequency For-
mulation (Ganji et al., 2010b), Adomian Decomposition (Mir-
golbabaei et al., 2010; Wazwaz, 2005), Variational Iteration

(Faraz et al., 2011; Babaelahi et al., 2009; Barari et al.,
2008a,b; Fouladi et al., 2010), and the Homotopy Perturbation
Method (He, 2000, 2005; Ghotbi et al., 2008; Omidvar et al.,

2010; Miansari et al., 2010; Ganji et al., 2009c, 2010a).
The Homotopy Perturbation Method is a combination of

the classical perturbation and Homotopy technique. To ex-
plain this, we consider the following nonlinear differential

equation:

AðuÞ � fðrÞ ¼ 0; r 2 X; ð2Þ

Subject to boundary condition:

Bðu; @u=@nÞ ¼ 0; r 2 C ð3Þ

where A is a general differential operator, B a boundary oper-

ator, f(r) is a known analytical function, C is the boundary of
domain X and @u=@n denotes differentiation along the normal
drawn outwards from X. The operator A can be divided into

two parts: a linear part L and a nonlinear part N. Therefore
Eq. (2) can be rewritten as follows:

LðuÞ þNðuÞ � fðrÞ ¼ 0; ð4Þ

In case that the nonlinear Eq. (2) has no ‘‘small parameter’’,

we can construct the following Homotopy:

Hðv; pÞ ¼ LðvÞ � Lðu0Þ þ pLðu0Þ þ pðNðmÞ � fðrÞÞ ¼ 0; ð5Þ

Where,

mðr; pÞ : X� ½0; 1� ! R; ð6Þ

In Eq. (6), p 2 ½0; 1� is an embedding parameter and u0 is the

first approximation that satisfies the boundary condition. We
can assume that the solution of Eq. (5) can be written as a
power series in p, as follows:

m ¼ m0 þ pm1 þ p2m2 þ . . . ; ð7Þ

Then the best approximation for the solution is:

u ¼ lim
p!1

m ¼ m0 þ m1 þ m2 þ . . . ; ð8ÞFigure 1 Idealized cross section for the mathematical modeling

of transient stream–aquifer interaction.
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