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Abstract 

Over the past 30 years or so, desingularized boundary integral equations (DBIEs) have been used to study water wave dynamics and 
body motion dynamics. Within the potential flow modeling, unlike conventional boundary integral methods, a DBIE separates the integration 
surface and the control (collocation) surface, resulting in a BIE with non-singular kernels. The desingularization allows simpler and faster 
numerical evaluation of the boundary integrals, and consequently faster numerical solutions. In this paper, derivations of different forms of 
DBIEs are given and the fundamental aspects and advantages of the DBIEs are reviewed and discussed. Numerical examples of applications 
of DBIEs in wave dynamics and body motion dynamics are given and the outlook of future development of the desingularized methods is 
discussed 
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1. Introduction 

Recently, a review paper on desingularized boundary in- 
tegral equation methods (DBIEMs) and their application in 

wave hydrodynamics and body dynamics involving water 
waves and floating bodies was presented at the Prof. R.F. 
Beck Honoring Symposium on Marine Hydrodynamics of the 
ASME 2015 34th OMAE Conference in St. John’s, New- 
foundland, Canada [24] . Due to the limit on the paper num- 
bers of the conference paper, many details could not be in- 
cluded. This paper is an expansion of the OMAE paper pro- 
viding more information on the DBIEMs and their applica- 
tions. 

For many flow problems involving free surface waves, the 
flows can be assumed inviscid and irrotational. Subsequently, 
the flow can be described using a scale function called a ve- 
locity potential that is governed by the Laplace equation. With 

the potential flow assumption, the wave dynamics problem re- 
duces to solving an initial boundary value problem for the ve- 
locity potential satisfying proper boundary conditions on the 
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free surface, surfaces of the structures, other rigid surfaces 
(such as the sea bottom), and a far-field radiation condition. 

Solution approaches to most wave problems involve solv- 
ing a mixed boundary value problem (BVP) for the velocity 

potential. The BVP can be solved using different methods. 
Boundary integral equation methods (BIEMs) have been most 
widely used. A conventional BIEM reformulates the BVP into 

a boundary integral equation (BIE). The integrals in the BIE 

involve fundamental singularities distributed over the “integra- 
tion surface”. The strength of the singularities is numerically 

determined by collocating the BIE on the “control surface”. 
Once the singularity strength is determined, the solution to 

the BVP can be obtained. In a conventional BIEM, the do- 
main boundary serves as both the “integration surface” and 

the “control surface”. The integrands of the BIE become sin- 
gular when a point on the “control surface” coincides with a 
point on the “integration surface”. 

A so-called desingularized boundary integral equation 

(DBIE) can be obtained by separating the “integration sur- 
face” and the “control surface”. The integrands in the in- 
tegrals in the DBIE are not singular because a point on 

the “control surface” will never coincide with any point on 

the “integration surface”. The desingularization allows use of 
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simpler and faster methods for the numerical evaluation of 
the panel integrals without degrading the accuracy, resulting 

in a significant reduction in the computational complexity and 

time. When the separation of the “integration surface” and the 
“control surface” are sufficiently far, the integration of the 
singularity distribution over a panel can be simplified into an 

isolated singularity, thus further reducing the complexity of 
the computation. The main advantage of the DBIEM is that 
it is much easier to program (as compared to the conven- 
tional BIEM) and can give a fast solution. A numerical so- 
lution method based on a DBIE is referred as desingularized 

boundary integral method (DBIEM). There can be different 
types (versions) of DBIEMs, depending on how the DBIE is 
derived, which will be further described in the later sections 
in this paper. 

The steady flow around a Rankine ovoid that can be found 

in most fluid mechanics books is probably the best known ex- 
ample of the indirect version of DBIEM. The solution can be 
obtained by using a source and sink pair combined with a 
uniform stream to yield a closed stream surface surrounding 

the two singularities. The closed stream surface is an elon- 
gated body, the Rankine ovoid, in a free stream. The distance 
between the source and the sink, as well as their strength, 
can be chosen so that the resulting closed streamline surface 
reassembles the desired Rankine ovoid. The method for the 
Rankine ovoid flow was extended by von Karman [54] to the 
steady flow of an arbitrary axisymmetric body in a free stream 

aligned with the body axis by distributing singularities along 

the axis inside the body. The strength of the singularity dis- 
tribution is determined by enforcing the kinematic boundary 

condition on the body surface. 
Webster [57] solved the steady flow past an arbitrary 3-D 

smooth body using a DBIEM by placing flat triangular panels 
of sources “submerged’ within the body surface with a bilin- 
ear distribution of source strength over each panel. The flow 

solution is constructed as the sum of the uniform incident 
stream and the flow induced by the source distributions over 
the triangular panels. The strength of the source distributions 
is determined by enforcing the kinematic boundary condition 

at a set of control (collocation) points on the body surface. 
From the numerical results, Webster concluded that “submer- 
gence of the singularity sheet below the surface of the body 

appears to improve greatly the accuracy, as long as the sheet 
is not submerged too far”. In Webster [57] , the panel inte- 
grations were done analytically, which require evaluation of 
transcendental functions. 

Kupradze [37] proposed a DBIEM for the exterior Dirich- 
let problem with an auxiliary control surface outside the prob- 
lem domain and gave a proof of the uniqueness of a direct 
version of the DBIE for Dirichlet problems. Heise [32] stud- 
ied some numerical properties of a DBIE used for plane elas- 
tostatic problems. Schultz and Hong [46] used a desingular- 
ized complex BIE for two-dimensional potential problems de- 
rived from the Cauchy’s integral (theorem) and showed the 
advantages of the desingularization. They also used an overde- 
termined system combining the real and imaginary parts of 
the Cauchy’s theorem. It was shown that the overdetermined 

system could exhibit higher-order convergence than the deter- 
mined system from either the real part or the imaginary part 
of the Cauchy’s integral. 

Use of DBIEMs was not popular as compared to singu- 
lar BIEMs, especially in solving water wave problems. Few 

applications of DBIEMs used for water wave problems were 
reported before the early 1980s. Preliminary attempts of us- 
ing DBIEMs for ship wave problems were reported by Cao 

[9,10] , Mei [41] and Jensen et al. [33] . In solving the steady 

nonlinear ship wave-making problem, Cao [9,10] used a mod- 
ified BVP formulation in which the free surface was divided 

into two zones: the wave zone being the Kelvin wave region 

bounded by the two 19 

°28 ́ straight lines starting from a small 
distance upstream of the ship bow and the non-wave zone be- 
ing the remaining of the free surface outside the Kelvin wave 
zone. The nonlinear free surface boundary condition was ap- 
plied in the deformed free surface in the wave zone and flat 
rigid horizontal wall condition was applied in the non-wave 
zone, through which the radiation condition (no waves travel- 
ing towards the upstream) was enforced. In solving the mod- 
ified BVP, Rankine sources were distributed above the free 
surface and inside the ship hull. The strengths of the sources 
were determined iteratively by enforcing the boundary condi- 
tions at the collocation points on the hull surface and the free 
surface (both on the deformed free surface in the wave zone 
and the flat horizontal surface in the non-wave zone). Mei 
[41] used Webster’s “submerged source panel” method Web- 
ster [57] to solve the double-body flow which was needed in 

the Dawson method for calculating the ship waves and the 
wave-making resistance. Jensen et al. [33] also reported inde- 
pendently the use of a Rankine source distribution above the 
free surface to solve the nonlinear steady ship wave problems. 

Since Longuet-Higgins and Cokelet [40] first introduced 

the mixed Euler–Lagrange method (ELM) to study two- 
dimensional fully nonlinear unsteady water waves near break- 
ing, the ELM method extended later to three dimensional 
problems has become the most popular numerical method 

for fully nonlinear wave problems in the time domain. The 
method is a time-marching procedure that requires two major 
tasks at each time step. In the first task (Euler phase), a BVP 

is solved for the flow. Then, in the second task (Lagrange 
phase), the free surface elevation and the velocity potential on 

it are updated at the next time instant by integrating in time 
the free surface kinematic condition and dynamic boundary 

condition. In the time marching approach, most computational 
time is spent in solving the BVP at each time step. Reduc- 
ing the computational time in solving the BVP with sufficient 
accuracy is very critical in simulating wave dynamics for a 
long duration for practical applications in ships and offshore 
structures. A research group at the University of Michigan led 

by Prof. Robert F. Beck started in 1987 to conduct extensive 
and more systematic investigation on DBIEMs in combination 

with the Euler-Lagrange time marching approaches to solve 
fully nonlinear wave problems. During a period of about 15 

years, various variations of the DBIEMs and computer algo- 
rithms were developed and used by the members of the group 

(during or after the work at the University of Michigan) to 
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