EI SEVIER Contents lists available at ScienceDirect ### Materials and Design journal homepage: www.elsevier.com/locate/matdes ### Stacking disorder in metastable NiSn₄ C. Schimpf ^a, P. Kalanke ^a, S.L. Shang ^b, Z.K. Liu ^b, A. Leineweber ^{a,*} ^b Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA ## CrossMark #### HIGHLIGHTS - Growth of metastable NiSn₄ in Sn/Ni diffusion couples produced in different ways - \bullet Clarification of the crystal structure of NiSn_4 - Modelling of X-ray diffraction patterns of faulted NiSn₄ fully explaining the observed patterns - Critical review of previously published reports on NiSn₄ #### GRAPHICAL ABSTRACT #### ARTICLE INFO Article history: Received 7 January 2016 Received in revised form 25 June 2016 Accepted 3 July 2016 Available online 08 July 2016 Keywords: Intermetallics X-ray diffraction Stacking disorder Planar faulting Crystal structure DFT calculation #### ABSTRACT The atomic structure of NiSn₄ intermetallic forming at ambient temperature in different types of Sn/Ni diffusion couples was investigated by powder X-ray diffraction. The recorded diffraction patterns show narrow Bragg reflections as well as characteristic broad diffraction bands indicative of stacking disorder in the crystal structure of NiSn₄. The crystal structure consists of NiSn₄ layers with square-antiprismatic coordination of Ni by Sn. The stacking of these layers is irregular (faulted) by being an intermediate between the pseudotetragonal PtSn₄- (space group Aeaa) and the tetragonal β -IrSn₄-type (space group $I4_1/acd$) ideal structures. Thereby, the shape of the diffraction bands reveals that the stacking more closely corresponds to β -IrSn₄- than to the PtSn₄-type. The obtained lattice parameters are: $a(\beta$ -IrSn₄) = $a(\text{PtSn}_4) = b(\text{PtSn}_4) = (6.248 \pm 0.001)$ Å and $2c(\text{PtSn}_4) = c(\beta$ -IrSn₄) = (23.001 \pm 0.004) Å. Pronounced stacking corresponding to a PtPb₄-type structure discussed in the literature is not present in NiSn₄ on the basis of the diffraction data. The latter finding is compatible with density functional theory (DFT) based first-principles calculations, indicating a higher energy for PtPb₄-type NiSn₄ as compared to PtSn₄- and β -IrSn₄-type NiSn₄. © 2016 Elsevier Ltd. All rights reserved. #### 1. Introduction Upon soldering of copper-containing systems using Sn-based solders, thin Ni buffer layers are frequently used as diffusion barriers in order to avoid excessive formation of Cu_6Sn_5 intermetallic, which can grow rapidly into the Sn, even below the melting point of the solder. This growth is considered as one possible cause for detrimental Sn- E-mail address: andreas.leineweber@iww.tu-freiberg.de (A. Leineweber). whisker formation [1–3]. Nevertheless, also from such Ni buffer layers, Ni–Sn intermetallics can grow into the Sn even at ambient temperature, albeit with a much smaller rate than it is observed for growth of Cu–Sn intermetallics. In solid Sn/Ni couples, formation of Ni $_3$ Sn $_4$, being the most Sn-rich stable intermetallic in the Ni–Sn system [4,5], is encountered, in particular at elevated temperatures below the melting point of the Sn-rich eutectic. At lower temperatures, down to ambient temperature, at least one additional Sn-rich phase develops. Most experimental information on Sn-rich intermetallics, apart from Ni₃Sn₄, seems to be compatible with a phase nowadays usually ^{*} Corresponding author. designated as NiSn₄ based on its assessed chemical composition.¹ The NiSn₄ phase does not only form in solid Sn/Ni diffusion couples [6–9], but was also observed in solidified Sn-rich Ni-Sn melts [10,11] and electrodeposited Sn-rich Ni-Sn alloys [12,13]. NiSn₄ has not been included in any Ni-Sn phase diagram as an equilibrium phase, because experimental evidence indicates that the NiSn₄ phase is metastable at all temperatures with respect to the tin solid solution and the Ni₃Sn₄ phase [6, 10,12]. The first crystal structure information on the NiSn₄ phase was reported by Watanabe et al. [12], who derived a tetragonal unit cell with a = 6.23 Å and c = 5.77 Å (cf. Table 1) from powder-X-ray diffraction (P-XRD) data recorded from an electrodeposited Ni-Sn alloy. Independently, Boettinger et al. [7] analysed electron backscatter diffraction (EBSD) patterns from NiSn₄ grown in a solid Sn/Ni couple and suggested that the crystal structure may be of the PtSn₄ type [14]. This structure type is also known for the binary intermetallics PdSn₄ [15], $(\alpha$ -)IrSn₄ [16], AuSn₄ [14], and CoSn₄ [17]; for structure details of all structure candidates for NiSn₄, cf. Section 2. The structure model for NiSn₄ used to interpret the observed Kikuchi lines was derived from those of PdSn₄ and PtSn₄ with lattice parameters modified due to the substitution of Pd/Pt by Ni; cf. Table 1. Thereby, Boettinger et al. [7] relied on crystal structure data of PdSn₄, PtSn₄ and AuSn₄ from the literature, which had been given in Aba2 symmetry, originating from the structure determination of PtSn₄ [14]. However, it was suggested [7] that the atomic structure is compatible with a higher, centrosymmetric Ccca (Ccce) symmetry, which corresponds to a space-group symbol Aeaa, if the original choice of basis vectors from Ref. [14] is adopted. Although the inversion symmetry associated with Aeaa/Ccce was not taken into account in a couple of later works on NiSn₄ referring to Boettinger et al. [7], the presence of a higher symmetry for phases of the PtSn₄type had been proposed even earlier: e.g. for PdSn₄ [18]² and for PtSn₄ [19]. That higher symmetry was also employed in the structure analysis of the Ni-substitution variants of AuSn₄ (maximum Ni content Au_{0.5}Ni_{0.5}Sn₄ [20]) and PdSn₄ (maximum Ni content Ni_{0.4}Pd_{0.6}Sn₄ [19]), which confirm that the orthorhombic PtSn₄-type structure may indeed be a very appropriate structure candidate for the metastable Independently from Watanabe et al. [12] and Boettinger et al. [7], Zhang et al. [9] interpreted P-XRD data from the NiSn₄ phase in terms of a tetragonal unit cell with a=4.421 Å and c=11.469 Å (cf. Table 1), where the observed reflections appeared compatible with the I4/mcm space group symmetry. An atomic structure was, however, not proposed. Moreover, some broad and diffuse diffracted-intensity maxima in the range of $2\theta=32...40^{\circ}$ (Cu-K α radiation) were observed and attributed to some secondary (oxide) phase. Very recently Liu et al. [21] reported a "metastable phase of Sn". Composition and synchrotron-X-ray microdiffraction data, however, were evaluated in terms of presence of a NiSn₄-related phase with PtSn₄-type structure with *Aba*2 symmetry yielding the lattice parameters given in Table 1. Total-energy calculations pertaining to 0 K using density-functional theory (DFT) [22,23] on Ni–Sn phases involved for NiSn₄ the PtSn₄-type structure in *Aba*2 symmetry³ and the tetragonal PtPb₄ structure [24] (see also Section 2 for structure details). Consideration of the latter was motivated by the tetragonal unit cell reported by Watanabe et al. [12], which is well compatible with the PtPb₄ structure type, as well as by the report of a metastable AuSn₄ polymorph with PtPb₄ structure [25]. These DFT calculations revealed similar energies for PtSn₄- and PtPb₄-type NiSn₄, favouring nevertheless the former. However, the **Table 1**Proposed space groups, crystal structure types and lattice parameters of the crystal structure of NiSn₁ found in the literature. | Symmetry | Structure
type | a [Å] | b [Å] | c [Å] | Method | Ref. | |--|--|--|--|---|--|---| | Tetragonal Aeaa Aba2 Aba2 P4/nbm P4/nbm I4/mcm Orthorhombic Aba2 | None PtSn ₄ PtSn ₄ PtSn ₄ PtPb ₄ PtPb ₄ None None PtSn ₄ | 6.23
6.397
6.171
6.347
6.156
6.325
4.421
6.25
6.38
6.40 | 6.23
6.426
6.199
6.369
6.156
6.325
4.421
6.27
6.42 | 5.77
11.381
11.296
11.66
5.726
5.901
11.469
-
11.27 | P-XRD ^a EBSD ^b DFT/LDA ^{c,g} DFT/GGA ^{d,g} DFT/LDA ^c DFT/GGA ^d P-XRD ^a TEM ^e EBSD ^b | [12]
[7]
[22]
[22]
[22]
[22]
[9]
[28]
[8] | | Aba2 | PtSn ₄ | 6.35 | 6.39 | 11.47 | S-XRD ^f | [21] | ^a Refinement of powder XRD pattern. closely related β -IrSn₄-type structure [26], which is also known for β -RhSn₄ [27], was not considered in the course of the DFT calculations [22]. Although the proposal that the $NiSn_4$ phase exhibits a $PtSn_4$ -type structure seems convincing on the basis of EBSD data [7] and the DFT calculations [22,23], there are, nevertheless, observations shedding some doubt on the completeness or even correctness of the structure model for $NiSn_4$. Particularly, Belyakov [28] mentioned that his EBSD patterns lack certain Kikuchi lines, which are predicted to be well visible by the $PtSn_4$ structure model. As will be shown in the present paper, the above-mentioned inconsistency of the PtSn₄-structure model with some experimental evidence can be explained by a modified structure model for the NiSn₄ grown in solid Sn/Ni diffusion couples at ambient temperature. That structure model, derived here on the basis of P-XRD data, is a layered one with a layer stacking in-between the previously proposed PtSn₄ structure and the closely related tetragonal β -IrSn₄-type polytype. Furthermore, DFT calculations are presented, which indicate that the PtSn₄-type and β -IrSn₄-type structures have virtually identical energies, which are significantly lower than that for the PtPb₄ structure. In fact, the latter structure appears incompatible with the P-XRD results. ## 2. Structure systematics of NiSn₄-related layered *T*Sn₄ phases (*T*: transition metal) The PtPb₄-, PtSn₄-, and β -lrSn₄-type structures regarded as relevant for the NiSn₄ intermetallic in the present work are illustrated in Fig. 1. In all these potential NiSn₄ structures Ni is coordinated by a square-antiprism formed by 8 Sn atoms [26]. These NiSn₈ square-antiprisms share common edges forming layers resulting in the NiSn₄ composition of the layers and in arbitrary stacking variants of these layers. These layers will be referred to as *NiSn₄ layers* henceforth, an example of which seen from [001] is shown in Fig. 1a. In all structures the stacking direction is [001], which is ensured in the case of the orthorhombic PtSn₄-type structure by an appropriate choice of the basis vectors in the non-standard *Aeaa* setting of space group no. 68. Note that the *Ccce/Ccca* standard setting has been used in a couple of previous works [7,15,20]. ¹ Note that in some of the early works this phase was also denoted with the formula NiSn₂, e.g. [6]. In the same work it was supposed that for AuSn₄ the Aba2 symmetry might indeed be correct. ³ Inspection of the relaxed atomic coordinates from Refs. [22,23] reveals that these are compatible with the centrosymmetric *Aega* symmetry. ^b Indexing of Kikuchi patterns with lattice parameters taken from database entries for the 'isomorphous' structure types PdSn₄, PtSn₄ and AuSn₄. The lattice parameter was not refined during Kikuchi pattern indexing. $^{^{\}rm c}$ Calculation using density functional theory (VASP [29]) with local-density approximation. d Calculation using density functional theory (VASP [29]) with generalized-gradient approximation. ^e Calculated from distance between diffraction spots in TEM selected-area electron diffraction (SAED) patterns. ^f Synchrotron radiation micro-beam X-ray diffraction. g Similar results were obtained in Ref. [23]. #### Download English Version: # https://daneshyari.com/en/article/827703 Download Persian Version: https://daneshyari.com/article/827703 <u>Daneshyari.com</u>