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This paper studies the nonlinear buckling and postbuckling characteristics of piezoelectric cylindrical nanoshells
subjected to an axial compressive mechanical load and an electrical load in the presence of surface free energy
effects. The electrical field is applied along the transverse direction. A size-dependent shell model is adopted
based on the Gurtin–Murdoch elasticity theory and von Karman geometrical nonlinearity. To satisfy the balance
conditions on the surfaces of the nanoshell, a linear variation is considered for the normal stress of the bulk
through the thickness. A boundary layer theory is employed including surface energy effects in conjunction
with the effects of nonlinear prebuckling deformation, large deflections in the postbuckling regime and initial
geometrical imperfections. Afterwards, a two-stepped singular perturbation technique is employed to obtain
the size-dependent critical buckling load and the associated postbuckling equilibriumpath for alternative electric
loadings. It is found that the surface free energy and electrical load can cause an increase or decrease on the crit-
ical buckling load and the associated postbuckling strength of a nanoshell depending on the sign of surface prop-
erties and applied voltage. These anticipations are the same for the both perfect and imperfect piezoelectric
nanoshells.
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1. Introduction

In recent years, piezoelectric materials with direct and converse ef-
fects [1–8] play an important role for several applications in adaptive pi-
ezoelectric nanoelectromechanical systems (NEMS). As a result,
investigation on the electromechanical characteristics of piezoelectric
structures at nanoscale is crucial for NEMS design. Masmanidis et al.
[9] and Sadek et al. [10] predicted the vibrational response of piezoelec-
tric MEMS made of GaAs nanofilm and GaAs nanowire, respectively.
They controlled the resonance frequency of piezoelectric nanostruc-
tures using bias voltage. Chen et al. [11] performed a theoretical study
on the buckling and dynamic stability of a piezoelectric viscoelastic
nanobeam subjected to van derWaals forces. Liang et al. [12] developed
a theoretical model to investigate the surface energy effects on the
postbuckling behavior of piezoelectric nanowires. Fang et al. [13] pro-
posed an analytical model using electro-elastic surface/interface
model for nanoscale structures to study the dynamic electromechanical

response of a multilayered piezoelectric nanocylinder subjected to
electro-elastic waves. Recently, Wang et al. [14] analyzed the free and
forced vibrations of piezoelectric circular nanoplates considering the ef-
fects of surface free energy and nonlocality.

In order to successfully design and develop nanodevices and nano-
structures, it is important to consider all essential characteristics of
theirmechanical behavior at this submicron size. As the classical contin-
uummodels have not the capability to consider size-effects in the anal-
ysis of nanostructures, their applicability in nanoscale is controversial.
Hence, the modification of continuum mechanics to accommodate
the size dependency of nanostructures is a topic of major interest. In
last decade, several non-classical continuum elasticity models have
been proposed in nanomechanics due to their accuracy and computa-
tional efficiency. These non-classical continuum models can predict
numerical results close to those achieved by molecular dynamics
models [15–25].

The surface free energy effect is one of the significant molecular ef-
fects which can be easily observed at the atomic scale, and this has
been clearly indicated and explained [26,27]. Because of dissimilar envi-
ronmental conditions, atoms at a free surface need different equilibrium
requirements in comparison with the atoms in the bulk material. This
difference causes excess surface energy as a superficial energy term
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since a surface can be interpreted as a layer to which certain energy is
attached [28]. For nanostructures, the surface free energy effect may
be significant due to their high surface area to volume ratio.

Gurtin and Murdoch [29,30] developed a theoretical framework
based on the continuum mechanics including surface free energy ef-
fects. In their model, the surface of structure is regarded as amathemat-
ical layer with zero thickness adhered to the underlying bulk material.
The Gurtin-Murdoch elasticity theory has been applied to many studies
to predict themechanical behavior of nanostructures [31–44]. In recent
years, Kiani [45] developed amodel based on surface elasticity theory to
study the surface effects on the free transverse vibration and instability
of current-carrying nanowires immersed in a longitudinal magnetic
field. Gao et al. [46] considered the surface stress effects in the analysis
of nanowire buckling on elastomeric substrates. Cheng and Chen [47]
presented a theoretical study of the resonance frequency and buckling
load of nanoplates with higher-order surface stress model. Sahmani et
al. [48] predicted the surface free energy effects on the postbuckling
characteristic of cylindrical nanoshells subjected to axial compression
and in different temperatures. Sahmani et al. [49] studied the free vibra-
tion characteristics of postbuckled functionally graded third-order shear
deformable nanobeams using surface elasticity theory. Zhang et al. [50]
investigated the transverse vibration of an axially compressed nanowire
embedded in elastic medium by implementing the high-order surface
stressmodel into the Bernoulli-Euler beam theory. Raghu et al. [51] pre-
sented analytical solutions for laminated composite plates using a non-
local third-order shear deformable theory considering the surface stress
effect. Zhang and Meguid [52] examined a modified continuummodel
of fluid-conveying nanobeams by incorporating the surface elasticity.

Due to the importance of instability phenomenon in nanoscale sys-
tems in electronics and biomedical applications, the objective of the cur-
rent study is to predict the nonlinear axial buckling and postbuckling
characteristics of piezoelectric cylindrical nanoshells in the presence of
surface free energy effects. It is assumed that the nanoshells are subject-
ed to an axial mechanical compressive load combinedwith a transverse
electrical field. Gurtin-Murdoch elasticity theory is implemented into
the classical shell theory to develop an efficient size-dependent shell
model incorporating surface free energy effects. The non-classical
governing differential equations with transverse displacement and
stress function as independent variables are deduced to a boundary
layer problem, which includes simultaneously the effects of surface
free energy, nonlinear prebuckling deformation, large postbuckling de-
flections and initial geometric imperfections. Subsequently, a two-
stepped singular perturbation technique is put to use in order to obtain
the size-dependent critical buckling load and the associated
postbuckling equilibrium path of piezoelectric nanoshells subjected to
a combined electromechanical load.

2. Preliminaries

In Fig. 1, a cylindrical nanoshell made of PZT-5H piezoelectric mate-
rial with the length L, thickness h, and mid-surface radius R is shown
which is subjected to axial compressive load combined with electric
field. The nanoshell includes a bulk part and two additional thin surface
layers (inner and outer layers).For the bulk part, thematerial properties
are Young's modulus E and Poisson's ratio v. The two surface layers are
assumed to have surface elasticity modulus of Es, Poisson's ratio vs and
the surface residual tension τs. According to a curvilinear coordinate
system with its origin located on the middle surface of nanoshell, coor-
dinates of a typical point in the axial, circumferential and radial direc-
tions are denoted by x, y and z, respectively. Now, in accordance with
the classical shell theory, the displacement field can be expressed as

ux x; y; zð Þ¼u x; yð Þ‐z ∂w x; yð Þ
∂x

ð1aÞ

uy x; y; zð Þ¼v x; yð Þ‐z ∂w x; yð Þ
∂y

ð1bÞ

uz x; y; zð Þ ¼ w x; yð Þ þw� x; yð Þ ð1cÞ

inwhichu, v andwdenote themiddle surface displacements along x,
y and z axis, respectively, andw⁎ represents the initial geometric imper-
fection in nanoshell.

On the basis of the von Karman–Donnell-type kinematics of nonlin-
earity [53], based onwhich it is assumed that the thickness of the shell h,
is remarkably small in comparison with its radius of curvature R, the ki-
nematical strain–displacement relationships for a cylindrical nanoshell
subjected to electric field in thickness direction (Ez) can be expressed
as follow
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where εxxM ,εxxM ,γxy
M and εxxE ,εxxE ,γxy

E represent themechanical and elec-
trical strain components, respectively. Also, εxx0 ,εxx0 ,γxy

0 stand for the
strain components of themiddle surface, and κxx ,κyy ,κxy denote the cur-
vature components of nanoshell, d31 and V ¼ Ezh are the piezoelectric
strain constant and applied voltage across the shell thickness,
respectively.

Then the constitutive relations can be given as
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in which λ=Eν/(1−ν2), μ=E/(2(1+ν)) are Lame's constants.
Gurtin–Murdoch elasticity theory facilitates considering surface en-

ergy effects in the conventional continuum approach. In relation with
the atomic features of nanostructures, there are always interactions

Fig. 1. Schematic view of a piezoelectric cylindrical nanoshell and its surface layers,
subjected to axial compression and electric field.
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