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Quench processing is widely used in industry to impart the desired structural andmechanical properties by con-
trolling microstructure and compositional gradients, e.g. to obtain supersaturated solid solutions in aluminium
alloys, or to achieve martensitic hardening in steels. Rapid cooling, also referred to as quenching or tempering,
is also the principal production route for bulk metallic glasses that exhibit high hardness and strength due to
their amorphous structure that precludes plastic deformation by easy crystal slip. Importantly, rapid cooling is
accompanied by the creation of residual stresses that also have a strong effect on the deformation behaviour.
The present study aims to obtain insight into the residual stresses in cylindrical samples of Zr-based bulkmetallic
glass (BMG) by combining analytical modelling of thermal and mechanical problems with experimental mea-
surements using Focused Ion Beam–Digital Image Correlation (FIB-DIC) ring-core milling. The results show
good agreement between the two approaches, providing improved confidence in the validity of the two ap-
proaches considered here.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The present short note contains the derivation of the family of ex-
plicit closed form solutions in the theory of thermal diffusivity and the-
ory of elasticity that describe the stress states associated with transient
problems in heat conduction and stress analysis. Problems of this kind
often arise in the studies of materials, e.g. when considering quenching
of structural components as part of primary manufacturing or heat
treatment, or in the context of the analysis of internal stresses and dam-
age in lithium ion battery electrodes [1].

The study of residual stresses arising as a consequence of thermo-
mechanical processing has a long history that goes back to the 18th cen-
tury work of Gabriel Lamé on the internal stresses in hollow and com-
posite cylinders [2]. The most straightforward case of residual stress
generated in a composite cylinder due to themismatch in the coefficient
of thermal expansion can be treated within the framework of elasticity.
A circular dissimilar inclusion represents the simplest case of an ellipsoi-
dal inclusion that was later generalised by Jock Eshelby in his famous
general treatment presented almost a century later [3].

A series of treatments that combine Lamé axisymmetric treatment
with plastic yielding appeared in the second half of the 20th century,

e.g. [4]. These approaches allow the prediction of residual stresses that
arise as a consequence of yielding under reversed thermo-mechanical
loading. Inverse problem formulations have also been proposed aimed
at extracting material yield strength from the measurement of residual
stresses [5].

A problem of particular interest in materials processing concerns
rapid cooling (quenching) that is a heat treatment often necessary to
control material microstructure and residual stress, e.g. in glass temper-
ing operations. In this study we present a combined theoretical and ex-
perimental evaluation of the residual stresseswithin rapidly cooled bulk
metallic glass (BMG) cylinders. Bulkmetallic glasses possess an unusual
combination of properties that makes them attractive for a range of ap-
plications. As withmany other glassy materials, BMG's can fail by brittle
fracture [6]. Therefore, the residual stress state in samples of BMG plays
an important contributing role in determining their structural integrity
[7]. The purpose of this study is to chart the way towards reliable eval-
uation of residual stresses in BMG samples at themicro-scale resolution.

2. Theory

The construction of the solution for residual stress in a rapidly cooled
glass cylinder consists of two sequential steps. First step is the solution
of the transient thermal conduction problem that allows the determina-
tion of inelastic strains (eigenstrains) ‘frozen in’ at this stage. The
eigenstrain distribution obtained from the thermal problem solution is
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then incorporated into the continuum mechanics equations to derive
the final residual stress state.

2.1. Power law approximants for transient thermal diffusion within a
cylinder

Consider a cylindrical object of radius a initially maintained at the
normalised temperature θ=1 throughout its volume.

At time zero, the temperature is reduced to θ=0 at its surface, and
maintained at that level afterwards. The time-dependent temperature
distribution within the cylinder is governed by the 2D transient diffu-
sion equation:

∂θ
∂t

¼ α∇2θ; ð1Þ

where α=κ/ρcp is thermal diffusivity expressed through the combina-
tion of thermal conductivity κ, density ρ and heat capacity cp of the
body. In the axi-symmetric case considered here the Eq. (1) simplifies to

1
α
∂θ
∂t

¼ 1
r
∂
∂r

r
∂θ
∂r

� �
: ð2Þ

The solution is sought by the method of separation of variables,
assuming.

θ r; tð Þ ¼ R rð ÞT tð Þ: ð3Þ

Substitution into Eq. (2) gives the variable separable form:

1
α
T 0

T
¼ R00

R
þ 1

r
R0

R
¼ −λ2 ð4Þ

The time-dependent part of the solution is given by:

T ¼ exp −λ2αt
� �

; ð5Þ

where the choice of−λ2 as the constant is justified by the requirement
that the temperature must not become infinitely large with time.

The spatially varying part satisfies the equation

rR00 þ R0 þ λ2rR ¼ 0: ð6Þ

and the solution has the form

R rð Þ ¼ C J0 λrð Þ: ð7Þ

Here J0(λr) is the Bessel function of zero order chosen to ensure that
temperature remains finite and continuous at r=0.

The values of parameter λ are found from the requirement that at
the boundary r=a the normalised concentration must be zero. Hence

J0 λnað Þ ¼ 0; and λna are the roots of J0: ð8Þ

The general solution is assembled in the form

θ r; tð Þ ¼
X∞
n¼1

Cn J0 λnrð Þ exp −αλ2
nt

� �
: ð9Þ

At time t=0 the expression in Eq. (9) must satisfy:

θ r;0ð Þ ¼
X∞
n¼1

Cn J0 λnrð Þ ¼ 1: ð10Þ

Using orthogonality relation for Bessel functions to enforce bound-
ary conditions, and re-assembling, the final solution is found in the

form:

θ r; tð Þ ¼ 2
X∞
n¼1

J0 λnrð Þ
λnað Þ J1 λnað Þ exp −αλ2

nt
� �

: ð11Þ

Introducing notation ξn=λna, and normalised variables ρ=r/a, τ=
αt/a2, the above solution can be re-written in dimensionless form as:

θ ρ; τð Þ ¼ 2
X∞
n¼1

J0 ξnρð Þ
ξn J1 ξnð Þ exp −ξ2nτ

� �
: ð12Þ

Consider the temperature profiles corresponding to the solution
expressed by Eq. (12) and illustrated by continuous curves in Fig. 1 for
selected values of normalised time τ=αt/a2. Throughout the process
of transient diffusion the temperature distribution can be approximated
well by a power law function, θ(r)=1−(r/a)m. The suitability of this
approximation is supported by the consideration that small inhomoge-
neities of material and diffusivity are likely to cause concentration vari-
ations comparable or in excess of the difference between the full
solution Eq. (12) and power law approximants. Hence, subsequent elas-
ticity analyses are built on the basis of this power law assumption.

The value of m must be chosen suitably to obtain good agreement.
The approximate relationship between the power law parameter m
and the normalised diffusion time τ obtained by least squares fitting
illustrated in Fig. 1(g) is given by:

m ¼ 0:36τ−0:66: ð13Þ

In summary, the solution of the transient diffusion equation as a
function of time and radial position within the sphere can be expressed
to good approximation in the form of the concentration varying as a
power law expressed in the form:

θ ρ; τð Þ ¼ 1−ρ0:36τ−0:66
: ð14Þ

The solution persists until the solute concentration at the centre of
the sphere begins to differ significantly from the initial value. This oc-
curs at the normalised time of τ≅0.05, when θ(0)=0.987, i.e. decreases
by ~1.3%.

It is worth highlighting here briefly the significance of formula (Eq.
(14)) that presents a closed form, non-series expression for the temper-
ature within a cylinder subjected to cooling (tempering or quenching)
as a function of time and coordinate. This form of expression allows
ready inversion. For example, the normalised time needed for the tem-
perature at half-radius of the cylinder to be decreased by one tenth of
the maximum value is expressed by the compact relation:

0:1 ¼ 0:5ð Þ0:36τ−0:66 ð15Þ

Its inversion gives the following simple result:

τ≈0:0345: ð16Þ

For normalised times exceeding τ=0.05, similar approximate
descriptions can be elaborated if the following temperature profile is
assumed

θ ρ; τð Þ ¼ Θ 1−ρmð Þ; ð17Þ

where Θ denotes the temperature at the centre. The power law expo-
nent m varies between the value of 2.6 at τ=0.05 and 1.6 at τ=0.2,
and for practical purposes can be fixed at this value for all τ≥0.2. A sat-
isfactory approximation for the central temperature value Θ at all
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