

Contents lists available at ScienceDirect

Materials and Design

journal homepage: www.elsevier.com/locate/matdes

One-step synthesis of C₆₀ nano-assemblies at different temperatures

Dedi Liu a, Dongping Liu Dong Dong A, Yangyang He Dong B, Jia Liu B, Bingbing Liu B

- ^a School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, PR China
- ^b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, PR China

ARTICLE INFO

Article history:
Received 18 July 2015
Received in revised form 31 December 2015
Accepted 4 January 2016
Available online 6 January 2016

Keywords: C₆₀ Nano-assemblies One-step synthesis Morphology

ABSTRACT

Nanoassemblies (microtubes, microrods, nanoflowers and nanorod arrays) composed of C_{60} nanorods, were fabricated with a solution evaporation method. The structures and the growth mechanism of C_{60} nano-assemblies were investigated. The C_{60} microtubes obtained at room temperature had a hexagonal structure, C_{60} microrods and nanoflowers synthesized at 0 °C and - 15 °C had a similar mixed hexagonal structure, and the C_{60} nanorod arrays had a structure indexed as an orthorhombic structure. The morphology of the C_{60} nano-assemblies depended on the shape and size of the seed crystals, which were closely related to the precipitation process from the saturated solution at different temperatures.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, much research has focused on the synthesis of nanocrystals with predetermined morphologies, which are important for a new generation of optical, electronic, and other devices. C_{60} is a useful zero-dimension material with many novel physical and chemical properties [1,2]. Very recently much attention has been given to the fabrication of nanocrystals with different morphologies, using C_{60} molecules as building blocks [3–10]. Several methods have been found to obtain single C_{60} nanocrystals with various shapes and dimensions, such as the solution evaporation method [4–7], the liquid–liquid interface method [8,9] and the template method [3,10]. However, dispersed nanocrystals could not meet the requirements for applications as nanodevices with advanced functions. Therefore, the production of nano-assemblies of single C_{60} nanocrystals with pre-determined shapes became a new research focus.

The current approaches to get C_{60} nano-assemblies tend to be based on physical methods, such as patterning and template-based methods [3,10]. However, it is difficult to assemble the friable C_{60} nanocrystals safely with physical methods, and it is also difficult to remove the template from the as-grown samples. Therefore, finding a single-step method to synthesize assembled C_{60} nanocrystals without any templates has become a key challenge in the design of integrated materials as functional devices.

E-mail address: liudedi@dlnu.edu.cn (D. Liu).

In this work, C_{60} nano-assemblies with microtube, microrod, nanoflower and parallel nanorod array morphologies were synthesized with a single-step modified solution evaporation method. Different morphologies were obtained by varying the evaporation temperature. All nana-assemblies were assembled from C_{60} nanorods, but different C_{60} nano-assemblies had different crystal structures. The mechanism of formation of these C_{60} nano-assemblies was tentatively explored. The very simple method of synthesis should make this method very useful in applications, such as the production of nano-devices and functional materials.

2. Experiment section

 C_{60} (purity > 99.9%) was purchased from Wuda Sanwei Carbon Cluster Corporation, China, toluene was purchased from Beijing Chemical Plant, China, and m-xylene (purity > 99.0%) was purchased from Phentex Corporation, USA.

A saturated toluene solution of C_{60} was deposited as small drops on a substrate (Si, glass, aluminum foil, etc.) and the same volume of mxylene was placed in the same way about 1 cm away, but not on the same substrate. The two drops of solutions were covered with an inverted glass beaker about 80 ml in volume. After slow evaporation of the C_{60} toluene solution in the m-xylene atmosphere under the cover at different reaction temperatures, including room temperature, 0 °C, -15 °C and -40 °C, we obtained C_{60} nano-assemblies on the substrate at the original position of the toluene solution.

The samples on the substrate were examined at room temperature by means of scanning electron microscopy (SEM, SSX-550 SHIMADZU, Japan), X-ray powder diffraction (Rigaku D/max-RA, using $CuK_{\alpha}1$

^{*} Corresponding author at: School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, PR China.

radiation with $\lambda = 1.5406$ Å) and Raman spectroscopy (Renishaw inVia, UK with an 830 nm laser as excitation to avoid photo-polymerization).

3. Results and discussion

Fig. 1a-h shows typical SEM images of the nano-assemblies of C_{60} nano-rods, synthesized at different temperatures. Four kinds of morphologies were observed for the samples: microtubes, microrods, nanoflowers and nanorod parallel arrays. Fig. 1a and b show SEM images of samples produced at room temperature. The images reveal that the C_{60} crystals had microtube morphologies with outer diameters in the range of 2–7 μ m. A single C_{60} microtube is depicted in Fig. 1b. A detailed examination of this picture shows that the microtubes had a hexagonal cross section. Also, an incomplete microtube was found among our samples, as shown in the insert of Fig. 1b. The SEM image of this incomplete microtube appears as a bundle of nanorods with diameters of several hundred nanometers, from which we deduced that the microtubes were assembled from parallel C_{60} nanorods. For

comparison, Fig. 1c and d showed C_{60} crystals obtained at 0 °C, C_{60} microrods having diameters in the range of 1 to 2 μ m were fabricated at this temperature. The tips of these C_{60} microrods indicated that also the microrods consisted of several C_{60} nanorods assembled together. Fig. 1e and f show SEM images of C_{60} crystals obtained at -15 °C. Beautiful flower-like morphologies were observed for the C_{60} crystals synthesized at this temperature. Again, all the C_{60} flowers were assembled from C_{60} nanorods. In this case, the diameters of the C_{60} nanorods were about 500 nm, and their lengths were 40 to 50 μ m. The diameters of the C_{60} flowers were in the range of 80–100 μ m. Fig. 1 g and h, finally, show that when the reaction temperature was -40 °C, C_{60} nanorarrays consisting of C_{60} nanorods arranged in parallel were formed. The C_{60} nanorods growing in a same direction along the substrate surface had diameters ranging from 200 nm to 500 nm.

To investigate the crystal structures of the as-grown C_{60} nanoassemblies fabricated at different temperatures, XRD experiments were carried out. We show in Fig. 2 diffraction patterns obtained for samples synthesized at room temperature, 0 °C, -15 °C and -40 °C,

Fig. 1. SEM images of C_{60} nano-assemblies synthesized at room temperature (a, b), 0 °C (c, d), -15 °C (e, f) and -40 °C (g, h), respectively.

Download English Version:

https://daneshyari.com/en/article/828190

Download Persian Version:

https://daneshyari.com/article/828190

<u>Daneshyari.com</u>