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Recent advances in additive manufacturingmake it possible to fabricate periodic lattice structures with complex
configurations. However, a proper design strategy to achieve lattice structures with controlled anisotropy is still
unavailable. There is an urgent need tofill this knowledge gap in order to developmechanicalmetamaterialswith
prescribed properties. Here we propose two different methodologies to design lattice structures with controlled
anisotropy. As examples,we created twonew families of lattice structureswith isotropic elasticity and cubic sym-
metric geometry. The findings of this work provide simple and effective strategies for exploring lightweight
metamaterials with desired mechanical properties.
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1. Introduction

Cellular structures are widely adopted as biological organisms in na-
ture through generations of natural selection, e.g., wood and bones [9],
sponge and diatom [2,23]. Cellular materials including honeycomb
and foam-like structures have high strength-to-weight ratios and
other superior properties [9]. Thus artificial cellular materials were de-
veloped and fabricated in the past decades on a large scale for a broad
range of applications such as energy absorption [6], energy storage
[16], structural components [28], catalyst carrier and biomaterials [14,
15]. A majority of man-made cellular materials are periodic structures
due to their stable mechanical properties and ease for mass production.
Various periodic structures have been designed in the past to accommo-
date the increasing demands of applications requiring specific mechan-
ical properties. The increasing advancement of various additive
manufacturing technologies makes it possible to fabricate complex
structures which cannot be processed by conventional technologies [7,
8,10,19]. The challenge is therefore finding the optimal design of struc-
tures. A typical case is the design of bone implants. The stiffness of the
artificial bone is anisotropic and has to be delicately designed as porous
structures tomatch the neighbouring natural bones and avoid the stress
shielding, which may cause significant malfunction after long service.
Analyses on natural bone show that the spatial distribution of Young's
modulus is smooth without sharp increase or decrease in certain
directions. However, most existing periodic bone implants focused on
simply reducing the stiffness [1,4,5,11,12,20,22,24,29,33] with very
few seeking for structures with isotropic or controlled anisotropic

elasticity [1,4,11,33]. Besides, most designs of bone implants were not
truss-like lattice and had complex internal structures since they were
obtained through topological optimization techniques [4,31,33].

Lattice structures are structurally simple andwidely used not only as
biomaterials, but also as other components in civil, aerospace and me-
chanical engineering. Studies on design andmanufacturing lattice struc-
tures are becoming increasingly important due to the attractiveness of
ultra-stiff and ultra-strong metamaterials with exceptional properties
[18,25,34]. Design of these structures with directionally controlled me-
chanical properties is of critical importance in various applications.
However, systematic and effective methodologies for designing such
lattice structures with controlled anisotropy are still unavailable. A con-
ventionalmethod to create a nearly isotropic lattice structure is to select
proper representative unit cells from 3D architecture libraries andmake
modifications on them to achieve goals [1,5]. This procedure usually in-
volves large amount ofwork onfinite elementmodelling to evaluate the
stiffness of structures in various loading directions through trial-and-
error methods, which is tedious and time-consuming. In this work, we
propose methodologies from a new perspective which can effectively
and efficiently build lattice structures with controlled anisotropy. To
achieve this, we first solve the problem of characterization and evalua-
tion of direction-dependent Young's modulus spatial distribution of lat-
tice structures. Previously the Young'smodulus spatial surfacewas used
to study the anisotropy of monocrystallines [17,21]. Similarly, it is pos-
sible to expand the method to represent the spatial distribution of
Young's modulus for lattice structures, if the effective Young's modulus
of these structures could be derived. Fortunately, the homogenization
theory [26,27] makes this possible since it can accurately approximate
the non-continuum periodic composites to continuum ones. Therefore,
by combining the homogenizationmethod and the 3D representation of
Young's modulus, it becomes easy and straightforward to assess and
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analyse the representative unit cells. Built upon this,wefindways to de-
sign novel lattice structures with controlled anisotropy. These design
methodologies will be useful for designing bone implants with desired
mechanical properties and for creating the next generation ultra-stiff
and ultra-strong metamaterials.

2. Methods and calculation

In this work, a simple and straightforward numerical homogeniza-
tion technique proposed by Steven [26,27] was used to obtain the effec-
tive stiffnessmatrix of the non-continuum, periodic lattice structures. In
Hooke's law, σij=Cijklεkl, unknown constants of the forth-order stiffness
matrix C can be reduced from 81 to 21 due to the symmetry in orthog-
onal system. In numerical realization [26,27,32], each time one strain
component was set to unit whereas the rest five as zero, e.g., Eq. (1).

Input :

ε11
ε22
ε33
ε23
ε31
ε12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

1
0
0
0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

output :

σ11
σ22
σ33
σ23
σ31
σ12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

C11
C21
C31
C41
C51
C61

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð1Þ

In this approach, the unit strain was expressed as a prescribed dis-
placement on the boundary so that the corresponding stresses could
be determined from reaction forces in finite element analyses. There-
fore, six finite element analyses were used to determine all the compo-
nents of the stiffness matrix. Two types of boundary conditions were
involved in terms of the strain type, i.e., normal strain and shear strain
[27]. Take a normal strain εx (ε11) for instance, the boundary conditions
were defined by

Δlxjx¼lx ¼ 0:001lx
Δlxjx¼0 ¼ Δly

��
y¼ly

¼ Δly
��
y¼0 ¼ Δlzjz¼lz ¼ Δlzjz¼0 ¼ 0 ð2Þ

whichmeans the displacement in x axis is 0.001lx when x= lx, i.e., εx =
0.001 and the displacements in all other directions are zeros. The
boundary conditions for shear strain cases were defined different. For
example, in the case of shear strain γxy (ε12), the boundary conditions
were

Δlxjz¼lx ¼ 0:0005lz;Δlzjx¼lz ¼ 0:0005lx
Δlzjx¼0 ¼ Δly

��
y¼ly

¼ Δly
��
y¼0 ¼ Δlzjz¼lz ¼ Δlxjz¼0 ¼ 0: ð3Þ

Although the boundary conditions were defined only from mathe-
matical viewpoint, this approach provides highly accurate results for
predicting the macroscopic mechanical properties of materials and
structures [26,27]. The meshing size was sufficiently small so that the
influence of the bending moment could be negligible. The whole ho-
mogenization procedure was coded in Fortran language with the finite
element analysis of each numerical test conducted in ABAQUS.

Tridimensional orientation-dependent polar plots of Young's
modulus surface are commonly used to represent the anisotropy of
monocrystallines [17,21]. Similarmethodmay also be extended to char-
acterize the non-continuum lattice structures after homogenization
treatment of the compliance (or stiffness) matrix. In this work, the
Young's modulus values at any direction are obtained through a succes-
sive procedure used in classical books [17,21], including calculation of
the direction cosine, transformation and rotation of stress tensor in dif-
ferent coordinate systems. Thematrix of direction cosine [λ] (3 × 3ma-
trix) is predetermined when rotating unitary orthogonal coordinate
system. Anisotropic materials abide by the Hooke's law {σ}=[C]{ε},
where {σ} = [σ11 σ22 σ33 σ23 σ31 σ12]T and {ε} = [ε11 ε22 ε33 ε23 ε31
ε12]T. After transformation in the orthogonal coordinate systems, the
new stiffness matrix becomes [C′]=[T][C][T]T. The transformation ma-
trix is dependent on the matrix of the direction cosine. Through this

operation, the Young's modulus surface can be plotted in a 3D space at
any direction defined by the direction cosine (different angles). The cal-
culation was coded in Matlab to produce all the 3D Young's modulus
surfaces in this work.

In this work, the stiffness matrix obtained through homogenization
was firstly assessed to check the anisotropy. For isotropic structures,
there are only two independent elastic constants, C11 and C12. In numer-
ical analysis, the anisotropy of the structure can be measured by

A ¼ 2C44= C11−C12ð Þ: ð4Þ

If A is close to unity, the structure could be treated as isotropic.

3. Results and discussion

3.1. Anisotropy of lattice structures

Unlike continuum metal materials, which are macroscopically iso-
tropic due to the random distribution of crystalline grains, lattice struc-
tures are commonly elastically anisotropicwith evidentweakdirections
relating to the rod arrangement. Using numerical homogenization
method proposed by Steven [26,27], we evaluated the effective stiffness
matrix of a variety of reported representative unit cells (base units).
Plotting the Young's modulus surface in an orthogonal coordinate sys-
tem similar to the method for analysing the elastic anisotropy of mono-
crystallines [17,21], the strong and weak directions can be clearly

Fig. 1. Architectures of typical representative units and the corresponding 3D spatial
representations of effective Young's modulus surfaces: (a) crossing-rod unit, (b) simple
cubic unit, (c) face-centre cubic unit, (d) diamond cubic unit, (e) octet-truss unit, and
(f) a combined unit of face-centred and body-centred units (FCC–BCC).
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