FISEVIER

Contents lists available at ScienceDirect

Journal of the Neurological Sciences

journal homepage: www.elsevier.com/locate/jns

Difference of fibroblast growth factor receptor 1 expression among CA1-3 regions of the gerbil hippocampus after transient cerebral ischemia

Ki-Yeon Yoo ^a, In Koo Hwang ^b, Choong Hyun Lee ^a, Jung Hoon Choi ^a, Seung-Hae Kwon ^c, Il-Jun Kang ^{d,*}, Sang Guan You ^e, Young-Myeong Kim ^f, Moo-Ho Won ^{a,*}

- ^a Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon 200-702, Republic of Korea
- b Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
- ^c Division of Analytical Bio-imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, 200-701, Republic of Korea
- ^d Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Republic of Korea
- ^e Marine Food Science and Technology, Kangnung-Wonju National University, Gangneung 210-702, Republic of Korea
- f Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 200-701, Republic of Korea

ARTICLE INFO

Article history: Received 11 January 2010 Received in revised form 16 June 2010 Accepted 17 June 2010

Keywords: Ischemia Hippocampus Fibroblast growth factor receptor 1 Glial fibrillary acidic protein Astrocytes Gerbil

ABSTRACT

Fibroblast growth factors are important regulators of neuronal development. In this study, we observed fibroblast growth factor receptor 1 (FGFR1) immunoreactivity and its protein levels in the hippocampus proper (CA1-3 regions) of the gerbil at various time points after ischemia/reperfusion. In the sham-operated group, FGFR1 immunoreaction was not detected in the hippocampus proper. FGFR1 immunoreaction was first detected in non-pyramidal neurons in the CA1-3 region at 12 h and 1 day after ischemia/reperfusion. From 2 days after ischemia/reperfusion, FGFR1 immunoreaction was found in astrocytes, not in microglial cells, in the CA1 region: FGFR1 immunoreactivity and the number of astrocytes were significantly increased at 5 days post-ischemia. Western blot analysis revealed that FGFR1 protein levels were also increased from 1 day after ischemia/reperfusion. These results indicate that increase of FGFR1 in astrocytes of the ischemic CA1 region may be associated with gliosis followed by delayed neuronal death.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Transient cerebral ischemia produced by transient deprivation of blood flow to the brain, as well as hippocampal neurons established the model of oxygen–glucose deprivation, leads to increased Ca²⁺ influx due to membrane depolarization [1,2]. In the brain, the hippocampus is one of vulnerable regions to transient cerebral ischemia. It is widely accepted that transient cerebral ischemia leads to delayed neuronal death of pyramidal neurons in the hippocampal CA1 region in adult gerbils [3,4]. Death of the CA1 pyramidal neurons following cerebral ischemia causes a variety of neurological dysfunction such as depression and memory deficits [5–9].

Fibroblast growth factors (FGFs) are important regulators of neuronal development with potent broad-spectrum neurotrophic and mitogenic activities in mesoderm- and neuroectoderm-derived It was reported that FGFR-1, FGFR-2 and FGFR-3 were expressed in the dentate gyrus of the hippocampus both during embryogenesis and throughout adulthood [21]. Several researchers have reported that brain ischemic insults increase FGF2 expression in the hippocampus [18–20]. However, there are few reports about the expression of FGFR1 in the hippocampus proper (CA1-3 regions) after transient cerebral ischemia. In the present study, therefore, we investigated the chronological changes of FGFR1 immunoreactivity and its protein levels in the hippocampal CA1-3 regions after 5 min of transient cerebral ischemia in gerbils.

2. Materials and methods

2.1. Experimental animals

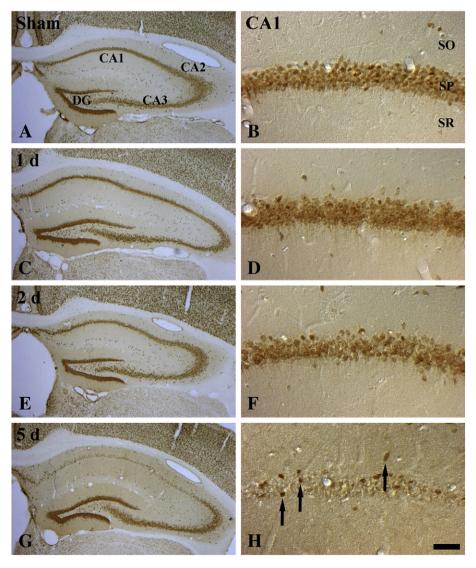
The progeny of male Mongolian gerbils (Meriones unguiculatus) were obtained from the Experimental Animal Center, Hallym

E-mail addresses: ijkang@hallym.ac.kr (I.-J. Kang), mhwon@hallym.ac.kr (M.-H. Won).

cell lines [10–12]. Disruption of the normal expression of FGF2 and FGF receptor 1 (FGFR1) is thus likely to have profound effects on CNS development, maintenance and repair [13,14]. It has been reported that FGF2 was up-regulated in various pathological disease such as kainite-induced seizure [15], depression [16] and fimbria-fornix transection [17] as well as ischemic damage [18–20].

^{*} Corresponding authors. Won is to be contacted at the Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon 200-702, Republic of Korea. Tel.: +82 33 248 2522; fax: +82 33 256 1614. Kang, Tel.: +82 33 248 2135; fax: +82 33 255 4787.

University, Chuncheon, South Korea. Gerbils were used at 6 months (B.W., 65–75 g) of age. The animals were housed in a conventional state under adequate temperature (23 °C) and humidity (60%) control with a 12-h light/12-h dark cycle, and provided with free access to water and food. The procedures for handling animals and their care conformed to the guidelines that are in compliance with current international laws and policies (NIH Guide for the Care and Use of Laboratory Animals, NIH Publication No. 85-23, 1985, revised 1996). All of the experiments were conducted to minimize the number of animals used and suffering caused by such procedures.


2.2. Induction of transient cerebral ischemia

The animals were anesthetized with a mixture of 2.5% isoflurane (Baxtor, Deerfield, IL) in 33% oxygen and 67% nitrous oxide. Bilateral common carotid arteries were isolated and occluded using non-traumatic aneurysm clips. The complete interruption of blood flow was confirmed by observing the central artery in retinae using an ophthalmoscope. After 5 min of occlusion, the aneurysm clips were removed from the common carotid arteries. The body (rectal) tem-

perature under free-regulating or normothermic ($37\pm0.5\,^{\circ}$ C) conditions was monitored with a rectal temperature probe (TR-100; Fine Science Tools, Foster City, CA) and maintained using a thermometric blanket before, during and after the surgery until the animals completely recovered from anesthesia. Thereafter, animals were kept on the thermal incubator (Mirae Medical Industry, Seoul, South Korea) to maintain the body temperature of animals until the animals were euthanized. Sham-operated animals were subjected to the same surgical procedures except that the common carotid arteries were not occluded.

2.3. Tissue processing for histology

For the histological analysis, sham-operated and ischemia-operated animals were anesthetized with chloral hydrate (30 mg/kg, i.p.) and perfused transcardially with 0.1 M phosphate-buffered saline (PBS, pH 7.4) followed by 4% paraformaldehyde in 0.1 M phosphate-buffer (PB, pH 7.4). The brains were removed and postfixed in the same fixative for 6 h. The brain tissues were cryoprotected by infiltration with 30% sucrose overnight. Thereafter, frozen tissues were

Fig. 1. NeuN immunohistochemistry of the hippocampus in sham- (A and B) and ischemia-operated groups 1 day (C and D), 2 days (E and F) and 4 days (G and H) after ischemia/reperfusion. Two days after ischemia/reperfusion, NeuN⁺ pyramidal neurons in the CA1 region are similar to those in the sham-operated group. Four days after ischemia/reperfusion, NeuN⁺ pyramidal neurons in the CA1 region show "delayed neuronal death." "Arrows" indicate non-pyramidal neurons. SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum. Scale bars = 250 μm (A, C, E and G), 50 μm (B, D, F and H).

Download English Version:

https://daneshyari.com/en/article/8282888

Download Persian Version:

https://daneshyari.com/article/8282888

<u>Daneshyari.com</u>