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a b s t r a c t

A thermodynamic method based on surface thermodynamics and atomic bond energy was developed to
accurately investigate the lattice distortion rates of metallic nanomaterials. The results indicated that the
lattice distortion rates of nanomaterials follow an inverse proportional relationship with the size, in good
agreement with the experimental results. In this method, the anisotropy of the lattice distortion was a
considerable issue. We found that the surface tension and Young’s modulus of the nanocrystals, com-
pared with those of the bulk materials, change because of the lattice distortion and exhibit a linear rela-
tionship at the nanoscale. By defining a shape factor (n), the lattice distortion rates of nanoparticles,
nanowires, and nanofilms were calculated. This method provides a new approach for the evaluation of
the lattice distortion rates in nanomaterials.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As a bridge spanning between the atomic level and its bulk
counterpart, the lattice parameters of metallic nanomaterials have
become an active area of research in material science [1]. Recent
experimental observations show that the lattice parameters of
metallic nanomaterials are size dependent. For most metallic
materials, the lattice parameters decrease with decreasing the size
[2]; however, some reports highlight the opposite behavior,
describing an increase of the lattice parameters when the size is
reduced. A typical example is provided by Palkar et al. [3], who
reported a lattice expansion as the particle size of CuO decreased.
However, Borgohain et al. [4] reported the opposite result, and the
only difference between the two studies resided in the adopted
synthesis procedure [5].

Meanwhile, researchers have proposed several models to inves-
tigate the lattice distortion. Sun et al. [6] and Wolfer et al. [7] pro-
posed a surface-atom-bond contraction model. Obviously, this
method, which is based on atomic bonds, is considered the most
basic and intuitive, but is also considerably complicated. Wagner
et al. [8] and Qin et al. [9] developed a model based on grain
boundaries and vacancies to explain the lattice expansion as the
particle size decreases. The results were confirmed by electron
microscopy observations, which indicated that vacancies often

lead to a lattice expansion. Yu et al. [10] and Jiang et al. [11–13]
proposed some models based on surface tension, surface stress,
and elastic modulus. In fact, Young’s modulus and atomic bond
energy are associated. Nanda et al. [14] postulated that a nanopar-
ticle can be described as a liquid drop. However, this method
implies that the surface tension and elastic modulus do not
decrease with the size, and it is indeed possible to come to incor-
rect conclusions for nanoscale materials [15].

Furthermore, Yu et al. [10] observed that the contraction of the
c-lattice is more significant than that of the a-lattice. To
resolve this problem, Nanda et al. [14] examined different crystal
structures based on the internal and external pressures. In addition,
Jiang and Qi [11–13] studied different shapes and crystal surfaces.

Moreover, Findik et al. [16–21] and Lei et al. [22] considered the
spinodal decomposition and discrete dynamical model to study the
thermodynamic energy of metal materials, achieving some inter-
esting results. Currently, a thorough research study on the
surface-atom-bond contraction model based on surface ten-
sion, surface stress, and elastic modulus has not yet been proposed.
In this work, we try to establish the relationship between the lat-
tice distortion and the size of the nanocrystal to investigate their
intrinsic properties by using the surface thermodynamic method.

2. Relationship between lattice distortion rate and nanosize

From surface thermodynamics considerations, the surface atom
bond energy is different from that of the atoms located inside the
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crystal. This unbalanced energy may cause the surface-atom-bond
contraction. For a spherical particle, the Laplace equation is used to
calculate the pressure [10]:

DP ¼ 2r
R

ð1Þ

where DP is the difference in pressure inside and outside the spher-
ical particle, and r and R are the surface tension and the radius of
the spherical particle, respectively.

Furthermore, a relationship between the difference in pressure,
spherical particle volume, and bulk modulus is given by [14,21]

DP ¼ �K � DV
V
¼ �3KDa

a
ð2Þ

where DV is the volume change of the spherical particle caused by
the surface tension; V is the total volume of the spherical particle; K
is the bulk modulus, which refers to the compressibility of the
material (K = Y/[3(1 � 2l)], where Y is Young’s modulus and l is
Poisson’s ratio); a is a lattice parameter.

Following Eqs. (1) and (2), the lattice distortion rate (Da/a) is
given by

Da
a
¼ �2r

3K
� 1
R
: ð3Þ

For bulk crystal materials, Da/a and the grain radius exhibit an
inverse proportional relationship because of the surface tension r
and the fact that the bulk modulus is considered as a constant.
However, the surface tension and Young’s modulus are size depen-
dent for nanoscale crystal materials [23].

According to the broken-bond rule, the surface energy W is
equal to [24]

W ¼ 1
2
� Z � N � Eatom � A ð4Þ

where Z is the change of the coordination number of the lattice, N is
the lattice area, Eatom is the atomic binding energy of the bulk mate-
rial, and A is the increase of the surface area. From Eq. (4), the sur-
face tension r can be expressed as

r ¼ 1
2
� Z � N � Eatom ð5Þ

Thus, according to Eq. (5), the surface tension r and atomic
binding energy Eatom have a proportional relationship [10].

On the other hand, the atomic binding energy Eatom is propor-
tional to the cohesive energy E. In addition, it was demonstrated
that the cohesive energy is size dependent, and that the surface
tension is proportional to the cohesive energy E in nanoscale sys-
tems [13]. Therefore:

rnano

rbulk
¼ Enano

Ebulk
: ð6Þ

Furthermore, some reports indicate that Young’s modulus Y, the
atomic bond energy, and cohesive energy are associated [15].
Consequently:

Ynano

Ybulk
¼ Enano

Ebulk
¼ rnano

rbulk
: ð7Þ

Combining Eq. (3) and Eq. (7),

Da
a

� �
nanoscale

¼ �2ð1� 2lÞrbulk

Ybulk
� 1
R
: ð8Þ

In Eq. (8), Poisson’s ratio l, surface tension rbulk, and Young’s
modulus Ybulk are all constant. As a result, there is an inverse pro-
portional relationship between the lattice distortion rate of the
nanoscale crystal materials and the grain radius.

3. Results and discussion

3.1. Lattice distortion of nanoscale metals

Fig. 1 shows the variation of the lattice distortions rates with
the radius of Ag, Al, Au, Cu, Pd, and Pt spherical nanoparticles.
The solid line is given by Eq. (8). The data used for the calculation
are listed in Table 1 [25–27]. The reported experimental data for Ag
[28,29], Al [29,30], Au [29,31], Cu [32], Pt [32], and Pd [33,34] are
represented by the corresponding symbols. We found that the lat-
tice parameters of the metallic Au, Cu, Al, Pt, Pd, and Ag nanocrys-
tals are size dependent. According to Eq. (8), the lattice distortion
rate of the Au nanoparticles was approximately 0.08% for a particle
radius of 6 nm. The value of Da/a gradually increased to 0.50% as
the radius decreased to approximately 1 nm, exhibiting a sharp
increase as the particle radius continued to decrease. The value
of Da/a was around 2.50% when the radius reached the value of
0.2 nm. The reported experimental data are shown in Fig. 1a for
comparison. The results indicated that the values obtained from
Eq. (8) were in good agreement with the experimental data.

The lattice distortion rates of the Al, Au, Cu, Pd, and Pt nanopar-
ticles exhibited the same relationship with the nanoparticle size, as
shown in Fig. 1b–f. All the results from Eq. (8) agreed well with the
corresponding experimental results.

Fig. 2 shows the variation of the lattice distortions rates Da/a
and Dc/c with the size for Sn and Bi nanoparticles. Notably, Sn ele-
ment has a tetragonal crystal structure and a ratio of c/a = 3.28237
(c > a). From Eq. (5) we found that the coordination number of the
lattice (Z) and the atomic binding energy of the bulk material
(Eatom) are constant, but the lattice area is different. Therefore
Da/a is smaller than Dc/c and Dc/c = K�Da/a is reasonable. The
results show that the lattice distortion Dc/c is greater than Da/a
consistently with the experimental results, as shown in Fig. 2a.
Elemental Bi has a rhombohedral crystal structure and a ratio of
c/a = 3.86741 (c > a). Its behavior is also consistent with Eq. (8).
The lattice distortion rates along the a and c directions agree well
with the experimental results, as shown in Fig. 2b.

All the results have theoretically and experimentally demon-
strated that Eq. (8) can accurately describe the lattice distortion
in nanoscale crystals. The lattice distortion rates follow an inverse
proportional relationship with the radius of the nanoscale
materials.

3.2. Surface tension and Young’s modulus of nanoscale metals

The cohesive energy E(r) of the materials can be given by [11]

EðrÞ ¼ p � q
p� q

� �
� Eatom �

a
r

� �p

� 1
p
� a

r

� �q

� 1
q

� �
ð9Þ

where p and q are constant, a is lattice parameter, and r is the dis-
tance between the atoms.

For metals, p = 12 and q = 6. From Eq. (9), we have:

dEðrÞ
dr
jr¼r0

¼ 0 and � d2EðrÞ
dr2 jr¼r0

¼ E � 72
r2

0

ð10Þ

where r0 is the equilibrium distance between the atoms. Eq. (2) can
be rewritten as

K ¼ �V � dP
dV
¼ �V

@

@r
� @EðrÞ

@r
� dr
dV

� �
� dr
dV

: ð11Þ

From Eqs. (10) and (11), based on the model of Sun and Jiang
[6,11], we have

K ¼ c � Eatom

r3
0

ð12Þ
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