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A B S T R A C T

Staphylococcus aureus produces bacillithiol (BSH) as major low molecular weight (LMW) thiol which functions in
thiol-protection and redox-regulation by protein S-bacillithiolation under hypochlorite stress. The aldehyde
dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus.
Here, we have studied the expression, function, redox regulation and structural changes of AldA of S. aureus.
Transcription of aldA was previously shown to be regulated by the alternative sigma factor SigmaB. Northern
blot analysis revealed SigmaB-independent induction of aldA transcription under formaldehyde, methylglyoxal,
diamide and NaOCl stress. Deletion of aldA resulted in a NaOCl-sensitive phenotype in survival assays, sug-
gesting an important role of AldA in the NaOCl stress defense. Purified AldA showed broad substrate specificity
for oxidation of several aldehydes, including formaldehyde, methylglyoxal, acetaldehyde and glycol aldehyde.
Thus, AldA could be involved in detoxification of aldehyde substrates that are elevated under NaOCl stress.
Kinetic activity assays revealed that AldA is irreversibly inhibited under H2O2 treatment in vitro due to over-
oxidation of Cys279 in the absence of BSH. Pre-treatment of AldA with BSH prior to H2O2 exposure resulted in
reversible AldA inactivation due to S-bacillithiolation as revealed by activity assays and BSH-specific Western
blot analysis. Using molecular docking and molecular dynamic simulation, we further show that BSH occupies
two different positions in the AldA active site depending on the AldA activation state. In conclusion, we show
here that AldA is an important target for S-bacillithiolation in S. aureus that is up-regulated under NaOCl stress
and functions in protection under hypochlorite stress.

1. Introduction

Staphylococcus aureus is a major human pathogen that causes local
wound infections, but also life-threatening systemic and chronic

infections, such as septicemia, endocarditis, necrotizing pneumonia and
osteomyelitis [1–3]. Moreover, there is an increasing prevalence of
hospital- and community-acquired methicillin-resistant S. aureus
(MRSA) isolates that are often resistant to multiple antibiotics [4]. S.
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aureus quickly escapes to bactericidal action of new antibiotics and is
therefore classified as ESKAPE pathogen by the “European Center of
Disease Prevention and Control” [5]. The successful infection of S.
aureus is mediated by a high diversity of virulence factors, such as
toxins, proteases, lipases, superantigens, as well as efficient protection
mechanisms against the host immune defense during invasion [6,7].
During infections, S. aureus has to cope with the oxidative burst of
activated macrophages and neutrophils, including reactive oxygen and
chlorine species (ROS, RCS), such as hydrogen peroxide (H2O2) and the
strong oxidant hypochloric acid (HOCl) [8–11]. HOCl is generated in
neutrophils from H2O2 and chloride by the myeloperoxidase (MPO)
which is the main cause of bacterial killing [12,13].

Apart from ROS and RCS, S. aureus is frequently exposed to reactive
electrophile species (RES), such as quinones and aldehydes that origi-
nate from cellular metabolism, as secondary oxidation products from
ROS and RCS as well as from external sources, such as antibiotics and
host-defense components [11,14–17]. RES are α,β-unsaturated di-
carbonyl compounds that have electron-deficient centers and can react
with protein thiols via oxidation or thiol-S-alkylation chemistries
[16,17]. Methylglyoxal is an example for a highly toxic and reactive
aldehyde produced as by-product from triose-phosphate intermediates
during glycolysis [14,15]. Methylglyoxal detoxification pathways and
their regulatory mechanisms have been widely studied in E. coli and B.
subtilis. E. coli utilises a glutathione (GSH)-dependent glyoxalase
pathway and a GSH-independent pathway for methylglyoxal detox-
ification. In the glyoxalase pathway, methylglyoxal reacts sponta-
neously with GSH to form hemithioacetal which is converted by
glyoxalase-I to S-lactoylglutathione. S-lactoylglutathione is the sub-
strate for glyoxalase-II leading to lactate production [14,18]. The
glyoxalase gloA and the nemRA operon are induced by quinones, alde-
hydes and HOCl and regulated by the TetR-family NemR repressor in E.
coli [19–22]. GloA functions as glyoxalase in methylglyoxal detox-
ification and NemA is an FMN-dependent oxidoreductase involved in
detoxification of quinones and aldehydes. Moreover, it was shown that
methylglyoxal is produced as consequence of hypochlorite stress and
that NemR confers protection to methylglyoxal and HOCl via control of
the gloA-nemRA operon [20].

Gram-positive Firmicutes, such as Bacillus subtilis and S. aureus
produce bacillithiol (BSH) as GSH surrogate which functions as pro-
tection mechanism against redox-active compounds and co-factor for
thiol-dependent enzymes [23,24]. Methylglyoxal detoxification in B.
subtilis involves BSH-dependent and BSH-independent pathways
[23,25]. In the BSH-dependent glyoxalase pathway, BSH reacts with
methylglyoxal to form BS-hemithioacetal which is converted to S-lac-
toyl-BSH by Glx-I and further by Glx-II to lactate [23,25]. In addition,
the thiol-dependent formaldehyde dehydrogenase AdhA confers pro-
tection under formaldehyde and methylglyoxal stress in B. subtilis
which is controlled by the MerR/NmlR-like regulator AdhR [35].
However, the enzymatic pathways involved in detoxification of reactive
aldehydes are unknown in S. aureus.

Recently, we identified the glycolytic glyceraldehyde-3-phosphate
dehydrogenase GapDH as major S-bacillithiolated protein in S. aureus
under NaOCl stress [26]. Apart from GapDH, the aldehyde dehy-
drogenase AldA was S-bacillithiolated at its active site Cys279 under
NaOCl stress, which could function in detoxification of methylglyoxal
or other aldehyde substrates. Here, we have studied the expression and
function of AldA of S. aureus under formaldehyde, methylglyoxal and
NaOCl stress. Transcriptional studies revealed an increased aldA tran-
scription under aldehyde, NaOCl and diamide stress in S. aureus. In
survival phenotype assays, the aldA mutant was more sensitive to
NaOCl stress. Using biochemical activity assays, we provide evidence
that S-bacillithiolation functions in redox-regulation of AldA activity.
All-atom molecular dynamics (MD) simulations suggest that the loca-
tion of BSH in the AldA active site depends on the Cys activation state in
the apo- and holoenzyme structures. In conclusion, our results indicate
that AldA plays an important role in the NaOCl stress defense and is

redox-regulated by S-bacillithiolation in S. aureus.

2. Materials and methods

2.1. Bacterial strains, growth and survival assays

Bacterial strains, plasmids and primers are listed in Tables S1 and
S2. For cloning and genetic manipulation, E. coli was cultivated in Luria
Bertani (LB) medium. S. aureus COL was cultivated either in LB or RPMI
medium as described previously [26]. For survival phenotype assays, S.
aureus COL was grown in RPMI medium until an OD500 of 0.5, exposed
to 2mM formaldehyde, 4mM methylglyoxal and 3.5 mM NaOCl stress
and 10 µl of serial dilutions were spotted onto LB agar plates for 24 h to
observe colonies. All complemented aldA deletion mutants with
plasmid pRB473 were grown in the presence of 1% xylose and 10 µg/ml
chloramphenicol. Sodium hypochlorite, diamide, dithiothreitol (DTT),
hydrogen peroxide (H2O2, 35% w/v), formaldehyde, methylglyoxal and
2-methylhydroquinone (MHQ) were purchased from Sigma Aldrich.

2.2. RNA isolation and Northern blot analysis

For RNA isolation, S. aureus COL was cultivated in RPMI medium
and treated with sub-lethal doses of 1mM NaOCl, 0.75mM for-
maldehyde (FA), 0.5mM methylglyoxal (MG), 10mM H2O2 and 50 µM
MHQ for different times as described previously [26]. S. aureus COL
cells were harvested before and after stress exposure and disrupted in
lysis buffer [10mM Tris-HCl, pH 8.0; 200mM sodium chloride (NaCl);
3 mM ethylene diamine tetra acetic acid (EDTA)] with a Precellys24
ribolyzer. RNA was isolated using acid phenol extraction as described
[26] and RNA quality was assessed using the Nanodrop. Northern blot
hybridizations were performed with the digoxigenin-labelled aldA-
specific antisense RNA probe synthesized in vitro using T7 RNA poly-
merase and the primer pairs aldA-for and aldA-rev (Table S2) as de-
scribed [26,27].

2.3. Cloning, expression and purification of His-tagged AldA and AldC279S
mutant proteins in E. coli

The aldA gene was amplified from chromosomal DNA of S. aureus
COL by PCR using primers aldA-for-NheI and aldA-rev-BamHI (Table
S2), digested with NheI and BamHI and inserted into plasmid pET11b
(Novagen) that was digested using the same enzymes to generate
plasmid pET11b-aldA. For construction of pET11b expressing Al-
dAC279S mutant protein, Cys279 was replaced by serine using PCR
mutagenesis. Two first-round PCR reactions were performed using
primer pairs aldA-for-NheI and aldA-C279S-Rev as well as primer pairs
aldA-C279S-for and aldA-rev-BamHI (Table S2). The two first round
PCR products were hybridized and subsequently amplified by a second
round of PCR using primers aldA-for-NheI and aldA-rev-BamHI. The
second-round PCR products were digested with NheI and BamHI and
inserted into plasmid pET11b digested with the same enzymes to gen-
erate plasmid pET11b-aldAC279S. The correct aldA and aldAC279S
sequences of the plasmids were confirmed by DNA sequencing. Plasmid
pET11b-aldAC279S was also used for construction of the aldAC279S
mutant in vivo and subcloned into the E. coli/S. aureus shuttle vector
pRB473 as described below.

For expression and purification of His-tagged AldA and AldAC279S
mutant protein, E. coli BL21(DE3) plysS was used expressing plasmids
pET11b-aldA and pET11b-aldAC279S, respectively. Cultivation was
performed in 1 l LB medium until the exponential growth phase at
OD600 of 0.8 followed by addition of 1mM isopropyl-β-D-thiogalacto-
pyranoside (IPTG) for 3.5 h at 37 °C. Recombinant His-AldA and His-
AldAC279S mutant proteins were purified after sonication of the E. coli
cells in binding buffer (20mM NaH2PO4, 500mM NaCl, 20mM imi-
dazole, pH 7.4). Lysates were cleared from cell debris by repeated
centrifugation and purification of the His-AldA and His-AldAC279S
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