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a b s t r a c t

This contribution draws practical implications of a recently published estimation of the tensile ductility
in laminated composites made of two ductile materials, typically metals or alloys, which harden as both
the strain and the strain-rate increase. To this end, the literature is surveyed to collect values for the
strain hardening exponent, the strain-rate sensitivity and the strength constant for a wide range of
engineering metals and alloys. Material combinations that might produce ductile laminated metal com-
posites are then examined in light of the data and theory. A simple graph is proposed, which gives a direct
reading of the predicted elongation to failure of composites containing equal volume fractions of any two
materials among those surveyed. The resulting plots show material combinations in which a more ductile
material can significantly increase, within a laminated metal composite (LMC), the tensile elongation of a
less ductile material. In this role, 304 stainless steel and commercial purity iron emerge as sensible
possibilities.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Of the many variables that govern the tensile elongation of duc-
tile materials, strain-rate hardening is that which exerts the most
dramatic influence: even small increases in a ductile material’s
strain-rate parameter m can strongly increase its tensile elonga-
tion; very high m values, roughly above 0.3, will even make it
superplastic. How strain-rate hardening increases the elongation
of materials is not simple: it does so, not by delaying the onset
of instability (as work hardening does), but by retarding the conse-
quences of necking. This makes the effect visible in experimental
data: a typical signature of elongation driven by strain-rate hard-
ening is the presence, in tensile stress–strain curves, of a long stage
of deformation after the applied load has peaked [1–4]. This feature
of the influence exerted by strain-rate hardening on tensile ductil-
ity complicates its analysis because one must examine the course
of events beyond the onset of instability, at which a neck starts
elongating faster than the remainder of a tensile bar. Linear stabil-
ity analysis is then essentially useless, a fact that was identified
and explained by Hutchinson and co-workers [1,4], who simulta-
neously with Ghosh [3] proposed a non-linear analysis of the
deformation of strain-rate sensitive tensile bars under what is
known as the long-wavelength approximation. This separates the
bar in two collinear regions, one slightly thinner than the other,
and then integrates their collective deformation behaviour

assuming uniform tensile stress across any section normal to the
applied load. These assumptions make the problem tractable using
simple numerical methods, and show how strain-rate sensitivity
delays the transition to unstable thinning of the thinner portion
in this two-zone description of a necked tensile bar.

In a recent paper, this analysis was extended to tackle, in
general terms, the uniaxial tensile deformation of equistrain com-
posites (e.g., laminated composites stressed along their plane of
lamination, or fibre composites stressed along their axis) made of
two strongly bonded work hardening and strain-rate sensitive duc-
tile materials (generally, but not necessarily, of metal) [5]. To dis-
tinguish these from the composite material, each of these two
bonded materials making the composite is called a ‘‘phase’’ in what
follows, even though these might, by themselves, be multiphased.
Here, practical implications of the analysis are examined, to probe
how it can aid the design of ductile laminated metal composites
(LMCs), originally reviewed by Sherby, Wadsworth et al. [6,7],
more recent reviews being in Refs. [8–10]. This is done by gleaning
literature data for the governing parameters K, n and m of a variety
of metals and alloys, and then using these as input to identify com-
binations that might (or might not) hold promise for the design of
ductile metallic LMCs. The article begins with a brief overview of
the model, and then turns to its use and its implications.

2. Governing equations

Consider a composite made of two components: A (a ductile
phase) and B (a less ductile phase), Fig. 1. The two are strongly
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bonded and resist delamination as the composite deforms. Parallel
to the plane of lamination, the flow stress of layered composites
can reasonably be assumed to obey the rule-of-mixtures:

rLMC ¼ VArA þ VBrB ð1Þ

where rA and rB are respectively the stress in each of the two
phases A or B when it is deformed to the average tensile strain of
the composite, e; the same rule of course applies also to aligned
fibre composites pulled along the fibres. Parameters VA and VB =
1�VA are the volume fractions of Phases A and B respectively, and
rLMC is the true (average) stress acting on the multilayered compos-
ite along the direction of applied stress. The two phases, A and B, are
assumed to be distributed on a scale sufficiently fine that their
stress and strain state always remain uniform across each cross-
section of the composite normal to the stress axis, yet sufficiently
large that their mechanical behaviour remain unaffected by plastic-
ity size effects (so that data from bulk materials testing, reviewed
below, can be used).

Following Hutchinson and Neale [1], the tensile specimen is
assumed to have a uniform cross sectional area, exception made
for a reduced (also called ‘‘non-uniform’’) section of cross-sectional
area only a small fraction g smaller than the remaining, main ‘‘uni-
form’’ part of the same section. The long-wavelength assumption
takes it that the transition to this reduced section is sufficiently
gradual for the stress to be everywhere uniaxial. The gage section
of the tensile bar is thus made of two colinear regions, one slightly
wider and much longer than the other, the latter being of thinner
cross section and destined to become the necking region of the
tensile bar. Axial load equilibrium between the uniform and non-
uniform portions dictates:

VArA þ VBrB½ �A ¼ VArA;0 þ VBrB;0½ �A0 ð2Þ

where A and A0 are the instantaneous cross-sectional areas of the
reduced and uniform sections respectively, and all quantities asso-
ciated with the uniform portion are denoted, in Eq. (2) and in all
that follows, with a subscript 0. By definition, the initial fractional
non-uniformity is:

g ¼ A0;in � Ain

A0;in
ð3Þ

with Ain and A0,in the initial cross sectional area of the reduced and
uniform portions of the gauge section, respectively. Assuming
constant volume, the true strain in the reduced (e) and uniform

(e0) portions of the considered sections is related to their cross-
sectional areas (A, A0) or lengths (L, L0) by:

e ¼ �ln
A

Ain
¼ ln

L
Lin
; e0 ¼ � ln

A0

A0;in
¼ ln

L0

L0;in
ð4Þ

Combining Eqs. (3) and (4) with Eq. (2) leads to:

VArA þ VBrB ¼
ee�e0

1� g
VArA;0 þ VBrB;0½ � ð5Þ

To describe the time-dependent flow stress of the two phases
making the laminate, a customary constitutional law is adopted,
in which contributions from strain hardening and strain-rate
hardening to the flow stress are added [1][3]:

r ¼ K en þm ln
_e
_eR

� �� �
ð6Þ

Here K is the strength constant, n the strain-hardening expo-
nent, m the strain-rate hardening constant and _eR a reference
strain-rate, typically given by the value 5 � 10�5 s�1 [3]. This
description of the material’s flow stress is convenient in the con-
text of composites, as will be seen below. It also has a physical
grounding, in that the strain-rate sensitivity m in Eq. (6) is directly
related to the (measurable) activation volume Va characteristic of
the thermally activated event that governs the strain-rate depen-
dence of plastic flow:

mK ¼ MkT
Va

ð7Þ

where kT has the usual meaning. Writing Eq. (6) for the two phases
A and B and inserting these two equations into Eq. (5) gives:

e�e VAKAenA þ VBKBenB þ VAKAmA þ VBKBmBð Þ ln
_e
_eR

� �� �

¼ e�e0

1� g
VAKAenA

0 þ VBKAenB
0 þ VAKAmA þ VBKBmBð Þ ln

_e0

_eR

� �� �

ð8Þ

for the composite in the long-wave length assumption. Two dimen-
sionless parameters then emerge:

b ¼ VAKA

VAKA þ VBKB
ð9Þ

l ¼ bmA þ ð1� bÞmB ð10Þ

which, when inserted into Eq. (8), turn it into:

ln
_e
_eR

� �
¼ ee�e0

1� g
benA

0 þ ð1� bÞenB
0

l
þ ln

_e0

_eR

� �� �

� benA þ ð1� bÞenB

l
ð11Þ

This gives, for a given level of deformation (at which the
uniform and reduced sections have respectively reached strains
e0 and e), the relation between instantaneous strain increments
in the two regions of the tensile bar. Assuming then a fixed
strain-rate in the uniform section of the tensile sample gage length
(i.e., that _e0 is constant), the deformation in the reduced section can
be deduced by numerical integration across small time steps. At
some point _e diverges rapidly to infinity: this is when the tensile
bar breaks.

This succession of events is depicted in Fig. 1, which depicts a
homogeneous composite of two finely divided continuous phases
that are aligned along the axis of the tensile bar, such that the
equistrain rule of mixtures applies everywhere. One region of the
tensile bar is slightly narrower than the rest. The inhomogeneity
being small, as the bar is pulled the two regions deform at first
together, with strain in the imperfection only slightly higher than

Fig. 1. Sketch of a tensile bar of laminated metal composite, and of the geometry
assumed in the long wavelength analysis.
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