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a b s t r a c t

Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic
acid (PA). Mammalian DGK comprises ten isozymes (aek) and regulates a wide variety of
physiological and pathological events, such as cancer, type II diabetes, neuronal disorders
and immune responses. DG and PA consist of various molecular species that have different
acyl chains at the sn-1 and sn-2 positions, and consequently, mammalian cells contain at
least 50 structurally distinct DG/PA species. Because DGK is one of the components of
phosphatidylinositol (PI) turnover, the generally accepted dogma is that all DGK isozymes
utilize 18:0/20:4-DG derived from PI turnover.
We recently established a specific liquid chromatography-mass spectrometry method to
analyze which PA species were generated by DGK isozymes in a cell stimulation-
dependent manner. Interestingly, we determined that DGKd, which is closely related to
the pathogenesis of type II diabetes, preferentially utilized 14:0/16:0-, 14:0/16:1-, 16:0/
16:0-, 16:0/16:1-, 16:0/18:0- and 16:0/18:1-DG species (X:Y ¼ the total number of carbon
atoms: the total number of double bonds) supplied from the phosphatidylcholine-specific
phospholipase C pathway, but not 18:0/20:4-DG, in high glucose-stimulated C2C12 myo-
blasts. Moreover, DGKa mainly consumed 14:0/16:0-, 16:0/18:1-, 18:0/18:1- and 18:1/18:1-
DG species during cell proliferation in AKI melanoma cells. Furthermore, we found that
16:0/16:0-PA was specifically produced by DGKz in Neuro-2a cells during retinoic acid-
and serum starvation-induced neuronal differentiation. These results indicate that DGK
isozymes utilize a variety of DG molecular species derived from PI turnover-independent
pathways as substrates in different stimuli and cells.
DGK isozymes phosphorylate various DG species to generate various PA species. It was
revealed that the modes of activation of conventional and novel protein kinase isoforms by
DG molecular species varied considerably. However, PA species-selective binding proteins
have not been found to date. Therefore, we next attempted to identify PA species-selective
binding proteins from the mouse brain and identified a-synuclein, which has causal links
to Parkinson's disease. Intriguingly, we determined that among phospholipids, including
several PA species (16:0/16:0-PA, 16:0/18:1-PA, 18:1/18:1-PA, 18:0/18:0-PA and 18:0/20:4-
PA); 18:1/18:1-PA was the most strongly bound PA to a-synuclein. Moreover, 18:1/18:1-PA
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strongly enhanced secondary structural changes from the random coil form to the a-helix
form and generated a multimeric and proteinase K-resistant a-synuclein protein.
In contrast with the dogma described above, our recent studies strongly suggest that PI
turnover-derived DG species and also various DG species derived from PI turnover-
independent pathways are utilized by DGK isozymes. DG species supplied from distinct
pathways may be utilized by DGK isozymes based on different stimuli present in different
types of cells, and individual PA molecular species would have specific targets and exert
their own physiological functions.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA) (Baldanzi, 2014; Goto
et al., 2006; Merida et al., 2008; Sakane et al., 2007; Topham and Epand, 2009). To date, tenmammalian DGK isozymes, a, b, g,
d, ε, z, h, q, i and k, have been identified (Fig. 1). Moreover, several alternative splicing productsdsuch as d1 and d2 (Sakane
et al., 2002); h1eh4 (Murakami et al., 2003, 2016; Shionoya et al., 2015); z1 and z2 (Ding et al., 1997); and i1ei3 (Ito et al.,
2004)dhave also been found. These isozymes are subdivided into five groups, type I (a, b and g), II (d, h and k), III (ε), IV
(z and i) and V (q), according to structural features (Fig. 1) (Baldanzi, 2014; Goto et al., 2006; Merida et al., 2008; Sakane et al.,
2007; Topham and Epand, 2009). Each group is characterized by subtype-specific functional domains, such as EF-handmotifs
(type I), pleckstrin homology and sterile a motif domains (type II), ankyrin repeats (type IV) and a ras-associating domain
(type V) (Fig. 1).

DGK isozymes regulate a wide variety of physiological and pathological events (Sakane et al., 2007, 2016, 2008). For
example, type I DGKa, which is activated in a calcium-dependent manner (Sakane et al., 1990, 1991), is involved in a wide
variety of pathophysiological events, such as T-cell anergy induction (Olenchock et al., 2006; Zha et al., 2006), cell motility and
invasion (Cutrupi et al., 2000; Rainero et al., 2014), and cancer cell growth/apoptosis (Takeishi et al., 2012; Torres-Ayuso et al.,
2014; Yanagisawa et al., 2007). Therefore, a selective and potent inhibitor for DGKa (Liu et al., 2016) can be an ideal anti-
cancer drug candidate that attenuates cancer cell proliferation and simultaneously enhances immune responses, including
anti-cancer immunity. Knockout (KO) mice of DGKb exhibited bipolar disorder (mania)-like phenotypes (Kakefuda et al.,
2010; Shirai et al., 2010). DGKg regulated lamellipodium formation (Tsushima et al., 2004), antigen-induced mast cell
degranulation (Sakuma et al., 2014) and insulin secretion (Kurohane Kaneko et al., 2013). DGKd positively regulated epidermal
growth factor receptor signaling (Crotty et al., 2006), and DGKd deficiency also caused hyperglycemia-induced peripheral
insulin resistance and thereby exacerbated the severity of type II diabetes (Chibalin et al., 2008). In addition, brain-specific
conditional DGKd-KO mice showed obsessive compulsive disorder-like behaviors (Usuki et al., 2016). DGKh acts as a crit-
ical regulator of B-Raf/C-Raf-dependent cell proliferation (Yasuda et al., 2009), and DGKh-deficient mice demonstrated bi-
polar disorder (mania)-like phenotypes (Isozaki et al., 2016). DGKk is implicated in fragile X syndrome (Tabet et al., 2016).
DGKε regulates seizure susceptibility and long-term potentiation (Rodriguez De Turco et al., 2001). DGKz negatively regulates
T-cell response (Zhong et al., 2003). In addition, DGKz is involved in the maintenance of spine density (Kim et al., 2009) and
reciprocally regulates p53 and nuclear factor-kB (Tanaka et al., 2013, 2016; Tsuchiya et al., 2015). DGKi inhibits Ras
guanylnucleotide-releasing protein (GRP) 3-dependent-Rap1 signaling (Regier et al., 2005). DGKq is suggested to be
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