

Contents lists available at ScienceDirect Advances in Biological Regulation

journal homepage: www.elsevier.com/locate/jbior

Role of IP₃ receptor signaling in cell functions and diseases

Katsuhiko Mikoshiba

Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan

Keywords: IP₃ receptor P400 IRBIT 2-APB Ca²⁺ Signaling hub *Trypanosoma cruzi* Calcium oscillation Malaria Ataxia

ABSTRACT

IP₃ receptor (IP₃R) was found to release Ca²⁺ from nonmitochondrial store but the exact localization and the mode of action of IP₃ remained a mystery. IP₃R was identified to be P₄₀₀ protein, a protein, which was missing in the cerebellum of ataxic mutant mice lacking Ca²⁺ spikes in Pukinje cells. IP₃R was an IP₃ binding protein and was a Ca²⁺ channel localized on the endoplasmic reticulum. Full-length cDNA of IP₃R type 1 was initially cloned and later two other isoforms of IP₃R (IP₃R type 2 and type 3) were cloned in vertebrates. Interestingly, the phosphorylation sites, splicing sites, associated molecules, IP3 binding affinity and 5' promoter sequences of each isoform were different. Thus each isoform of IP3 receptor plays a role as a signaling hub offering a unique platform for matching various functional molecules that determines different trajectories of cell signaling. Because of this distinct role of each isoform of IP₃R, the dysregulation of IP₃ receptor causes various kinds of diseases in human and rodents such as ataxia, vulnerability to neuronal degeneration, heart disease, exocrine secretion deficit, taste perception deficit. Moreover, IP₃ was found not only to release Ca^{2+} , but also to release IRBIT (IP_3 receptor binding protein released with inositol trisphosphate) essential for the regulation of acid-base balance, RNA synthesis and ribonucleotide reductase.

© 2014 Elsevier Ltd. All rights reserved.

E-mail address: mikosiba@brain.riken.jp.

The beginnings

When cells receive signals through receptors on the plasma membrane, the information is transmitted to various types of signaling cascades inside the cells leading cells to respond. Among the various intracellular signaling pathways, IP₃ signaling and diacylglycerol (DAG)-protein kinase C (PKC) pathways are fundamental to cell physiology. Upon activation of upstream receptors, two messenger molecules, IP₃ and DAG are hydrolyzed from phosphatidylinositol 4,5-bisphosphate (PIP2). This bifurcating signaling pathway is of fundamental importance in regulating a wide range of cellular processes (Fig. 1). DAG activates PKC to phosphorylate various proteins, leading to various cellular responses. As for the other messenger molecule IP₃, an important breakthrough occurred when it was demonstrated that IP₃ releases Ca^{2+} from non-mitochondrial internal stores (Streb et al., 1983) and that this Ca^{2+} released from internal store seemed to play various roles. It was puzzling why IP₃, a molecule with such simple structure, could exert such diverse functions.

Search for the target molecule of IP₃

Why does IP₃ exert such a variety of phenomena? The source of variety could be the function of Ca^{2+} or IP₃R. There are many papers on the function of Ca^{2+} up to now (Carafoli and Klee, 1999; Mikoshiba, 2007b, 2012; Pochet, 2000; Maruyama, 1995) (Islam, 2012). Therefore, I here focus on the mechanism how IP₃ signal is converted to multiple signals. To understand the function of IP₃, one way is to analyze the enzymes that synthesizes or degrade IP₃. Another way is to study the property of the target molecule of IP₃, IP₃ receptor, and investigate its biochemical, molecular and physiological properties. For this purpose they tried to identify IP₃R protein. There were various approaches to understand the property of IP₃R. One approach is to purify IP₃ binding protein and to subsequently determine of the amino acid sequence. Another approach is to clone the cDNA that encodes the full-length IP₃R, which also tells us the amino acid sequence of the IP₃R. The most important thing was to purify and characterize the IP₃R from the aspects of biochemistry and physiology.

Purification of the IP₃ receptor

Many researchers were attempting to purify the protein from various tissues (Spat et al., 1986) (Prentki et al., 1984; Sudhof et al., 1991; Supattapone et al., 1988) (Maeda et al., 1988): The IP₃ binding

Fig. 1. $IP_3 - IP_3$ receptor and Diacylglycerol (DAG)-Protein Kinase C (PKC) signaling system. IP_3 binds to IP_3 receptor and releases Ca^{2+} from intracellular stores and also releases IRBIT from the IP_3 binding core of IP_3 receptor. DAG activates PKC and PKC regulates various molecules by phosphorylation.

Download English Version:

https://daneshyari.com/en/article/8288147

Download Persian Version:

https://daneshyari.com/article/8288147

Daneshyari.com