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a b s t r a c t

Using classical design optimization methods for implant-bone studies does not completely guarantee a
safety and satisfactory performance, due in part to the randomness of bone properties and loading. Here,
the material properties of the different bone layers are considered as uncertain parameters. So their cor-
responding yield stress values will not be deterministic, that leads to integrate variable limitations into
the optimization process. Here there is a strong need to find a reliable mathematical relationship
between yield stress and material properties of the different bone layers. In this work, a new optimized
formulation for yield stress against elasticity modulus relationship is first developed. This model is based
on some experimental results. A validation of the proposed formulation is next carried out to show its
accuracy for both bone layers (cortical and cancellous). A probabilistic sensitivity analysis is then carried
out to show the role of each input parameter with respect to the limit state function. The new optimized
formulation is next integrated into a reliability analysis problem in order to assess the reliability level of
the stem–bone study where we deal with variable boundary limitations. An illustrative application is
considered as a bi-dimensional example (contains only two variables) in order to present the results in
an illustrative 2D space. Finally, a multi-variable problem considering several daily loading cases on a
hip prosthesis shows the applicability of the proposed strategy.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional deterministic design methods have accounted for
uncertainties through empirical safety factors. The designer does
not take into account uncertainties concerning materials, geometry
and loading. A number of uncertainties are encountered during the
design of osteo-articular systems. These uncertainties are resulted
from the variability of applied loads and materials properties, in
addition to that resulting from the design modeling. They can be
grouped in three main categories, namely irreducible, reducible
and statistical uncertainties [1]. In the best case scenario in the
design of structural systems, uncertainties can be reduced or
minimized but they cannot be completely eliminated. Thus, all
parameters of interest in an engineering design can be considered
as random variables [2]. To select these parameters, a sensitivity
analysis can be carried out. Some researchers have developed
computational tools using a set of random variables in context of
probabilistic analysis and durability studies [3,4]. However, pre-
dicting the mechanical behavior of bone is also a challenging task
for the current research as experimental tests on fresh human

bones which are often limited by the difficulty in obtaining speci-
mens and the complexity of testing protocols. Although the local
properties of bone changes continuously location by location two
main different types of tissue may be distinguished. The outer
layer limited by the periosteum is characterized by dense and com-
pact bone which has the highest mechanical properties, it is the
cortical bone. The inner part, or spongy bone, is characterized by
a higher level of porosity, lower mechanical properties, higher vas-
cularization and a higher . Here, three kinds of ability to absorb
energy before fracture; it is the cancellous (or trabecular) bone.
Our objective is to assess the reliability level of an optimized for-
mulation relating the elasticity modulus and the yield stress. We
first develop a new formulation for the elasticity modulus and
yield stress relationship. The developed formulation is next inte-
grated into the reliability analysis and applied on the stem design
implanted in a proximal femurvariables can be considered:

1. Design variables xi: the design variables are deterministic vari-
ables defined in order to optimize the system. They represent
control parameters of the mechanical system (e.g., dimensions,
materials, loads) and of the probabilistic model (e.g., mean val-
ues and/or standard-deviations of random variables).
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2. Random variables yi: the uncertainties are modeled by
stochastic physical variables affecting the failure scenario.
These variables can represent geometrical dimensions, material
characteristics or applied external loading. The knowledge of
these variables is not, at best, more than statistical information
and it can be admitted as a representation in the form of ran-
dom variables. The random physical variables represent the
structural uncertainties, which are identified by probabilistic
distributions.

3. Normalized variables ui: they represent the transformation of
the random variables from the physical space to a normalized
one according to certain probabilistic distribution laws.

The material of this paper is organized as follows: some
objectives concerning reliability analysis are first presented in
Section 2. A review of the previous formulations of material prop-
erties, especially, Young’s modulus and yield stress against den-
sity relationship, are presented in Section 3. We begin Section 4
with our generalized formulation of the yield stress against
Young’s modulus relationship in Section 4.1. Using some experi-
mental results, the generalized formulation is next developed to
find our optimized constants of proportionality in Section 4.2.
A numerical validation of the proposed formulation for cortical
and cancellous experimental results is carried out in Section 4.3.
Two numerical stem–bone examples considering several daily
loading cases are presented in Section 5. The first numerical
example of a bi-dimensional variable case is considered as an
illustrative 2D space modeling and the second one is a multi-
dimensional variable case to show applicability of the reliability
integration using the proposed formulation and Section 6 con-
cludes the paper.

2. Reliability analysis

The notion of reliability is very old. Ancient civilizations
constructed huge buildings and mechanisms and many of these
structures still exist, i.e., they have proven to be very reliable
designs. However, the cost of construction of these structures
was tremendous. Nowadays, the two main objectives in the design
of structural systems are to design systems that have satisfactory
reliability and are as inexpensive as possible [5]. In this section,
some basic concepts are first presented for design under uncer-
tainty and for reliability assessment methods.

2.1. Design under uncertainty

There is no way to make a perfectly safe design. Ignoring
uncertainty and using safety factors usually leads to designs with
inconsistent reliability levels. Three types of uncertainties can be
considered [1]:

1. Irreducible uncertainty: irreducible (or Inherent) uncertainty is
due to the inherent randomness in physical phenomena and
processes. It arises during the description of a physical process
and still exists even if unlimited data is available.

2. Reducible uncertainty: reducible (or model) uncertainty may
happen due to the use of imperfect models to predict outcomes
of an action. It results from the simplification of modeling a true
physical process and can be minimized by using more sophisti-
cated model.

3. Statistical uncertainty: it is due to the lack of data for modeling
uncertainty. Or, it is related to the fitting of a parametric distri-
bution and this uncertainty can be decreased by increasing the
number of fitting data points.

Fig. 1 shows a simplified diagram for design under uncertainty.
The design optimization process controls the input parameters
(quantified uncertainties) presented by statistical diagram in order
to satisfy the required output parameters (calculated uncertain-
ties). The test process is a comparative process between the calcu-
lated output and the quantified input until convergence, as shown
in Fig. 1.

Several strategies can be used for uncertainty measurements
such as: Safety factor, Worst case scenario-convex models, Taguchi
methods, Fuzzy set methods, Probabilistic methods. . . These strat-
egies lead a high computing time to compute the probability of
failure. An efficient optimization method based on reliability index
can be easily implemented and perform the reliability analysis
with a reasonable computing time.

2.2. Reliability index

To estimate the reliability index, several techniques have been
developed during the last 40 years, namely FORM (First Order Reli-
ability Methods), SORM (Second Order Reliability Method) and
simulation techniques [6]. The image of the random variables in
the standard normalized space is denoted u, calculated by:
u = T(x, y) where T(x, y) is the probabilistic transformation function
(Fig. 2). For a given failure scenario, the reliability index b is eval-
uated by solving a constrained minimization problem:

b ¼min dðuÞ subject to : HðuÞ ¼ 0 ð1Þ

with d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiX

u2
i

q
ð2Þ

where u is the vector modulus in the normalized space (or so-called
distribution parameters), measured from the origin see Fig. 2. In
FORM approximation, the probability of failure is simply evaluated
by

Pf � Uð�bÞ ð3Þ

where U(�) is the standard Gaussian cumulated function given as
follows:

UðZÞ ¼ 1ffiffiffiffiffiffiffi
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Z Z
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For practical engineering, Eq. (3) gives sufficiently accurate esti-
mation of the failure probability.

The solution to problem (1) defines the Most Probable failure
Point (MPP) see Fig. 2b. The resulting minimum distance between
the limit state function H(u) = 0 (Failure Surface) and the origin, is
called the reliability index b [6].

3. Actual formulations for material properties

The mechanical properties of bone depend on composition and
structure. However, composition is not constant in living tissues. It
changes permanently in terms of the mechanical environment,
ageing, disease, nutrition and other factors. Kopperdahl and

Fig. 1. Design under uncertainty.
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