Materials and Design 64 (2014) 477-489

Contents lists available at ScienceDirect

Materials and Design

journal homepage: www.elsevier.com/locate/matdes

Numerical simulation and design optimisation of an integrally-heated tool for composite manufacturing

Materials & Design

Rzgar Abdalrahman^a, Stephen Grove^{b,*}, Adam Kyte^b, Md Jahir Rizvi^b

^a Mechanical Engineering Department, Polytechnic University of Slemani, Slemani, Kurdistan, Iraq
^b School of Marine Science & Engineering, Plymouth University, Plymouth PL4 8AA, UK

ARTICLE INFO

Article history: Received 29 April 2014 Accepted 10 July 2014 Available online 1 August 2014

Keywords: Composite Heated tool Design of experiment Numerical simulation Optimisation

ABSTRACT

Tooling design is crucial for the production of cost-effective and durable composite products. As part of the current search for cost reduction, integrally-heated tooling is one of the technologies available for 'out-of-autoclave' processing of advanced thermoset polymer composites. Despite their advantages, integrally-heated tools can suffer from uneven distribution of temperature, variability in heat flow rate and inconsistency in heating/cooling time. This research, therefore, investigates a number of design variables such as shape and layout of heating channels in order to improve the thermal performance of an integrally-heated tool. Design of Experiments (DOE) has been carried out using Taguchi's Orthogonal Array (OA) method to set several combinations of design parameters. Each of these design combinations has been evaluated through numerical simulation to investigate heating time and mould surface temperature variation. The simulation results suggest that the layout of the channels and their separation play a vital role in the thermal performance. Signal-to-Noise (S/N) ratio and analysis of variance (ANOVA) have been applied to the results obtained to identify the optimal design combination of the integrally-heated tool. Statistical analysis reveals that the heating performance of an integrally-heated tool can be significantly improved when the channels' layout is parallel. The shape of the channels has negligible effect and the distance between the channels should be determined based on the production requirement.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

All types of fibre-reinforced composite products require accurate and robust tooling because the performance of the tool determines the integrity of the manufactured part. Tooling not only provides a reproducible geometry, it also provides consolidation which influences the mechanical and physical properties of the product and helps the transfer of heat into the polymer matrix. Throughout the last two decades, composite manufacturers have given high priority to cost reduction and increased energy efficiency in composite manufacturing [1]. In advanced composites, this requires alternatives to autoclave processing of prepregs [2–4]. Also the increasing demands of producing increasingly large composite products as a single piece cannot be fulfilled using traditional manufacturing methods as larger tools are required [5]. A variety of technologies known as 'Out of Autoclave' (OoA) processes includes novel approaches to heating of tooling, liquid composite moulding (e.g. resin infusion) and prepregs which can produce satisfactory fibre content without autoclave pressure [6–10].

In integrally-heated tools, the heating element and the tool are combined in-mould or on-mould [11]. This approach transfers the required heat through the mould and across its surface to cure the composite faster than traditional methods. A number of such heated tools are commercially available and are suitable for closed mould processes such as compression moulding, resin transfer mould (RTM) and its variations [12,13].

However, there have been few systematic studies of heated tooling for thermoset composites. This study has been carried out with the aim of improving the thermal performance of integrally water-heated composite tooling, suitable for a variety of liquid composite moulding or low temperature prepreg processes. Three design factors are selected and nine design combinations have been identified according to Taghuchi's orthogonal array. Numerical simulation of transient heat transfer has been carried out for each of the proposed nine designs of the integrally-heated tool. Then the statistical approach of S/N ratio has been applied to allow the control of the response variables and identify their optimal parametric combination. Analysis of variance has been applied to investigate the effect of design parameters on the response

^{*} Corresponding author. Tel.: +44 1752 586124. E-mail address: S.Grove@plymouth.ac.uk (S. Grove).

Nomenclature

Α	length of the square tool model	п	total number of the test cases in OA
A_c	channel cross section area	Р	peripheral wet perimeter of the channel
A_s	wet peripheral convection area of the channel	P_m	applied pressure on the mould surface
A_i	values of the corresponding area weights	P_P	percentage contribution of each parameter
Α	design parameter of channel layout	ΔP	pressure drop
В	a dimension of the channel layout	$\Delta P_1, \Delta P_2$, ΔP_3 and ΔP_4 pressure drop of the parallel branches
В	design parameter of channel profile	$0_1, 0_2, 0_3$	$_{3}$ and O_{4} volumetric flow rate in the main inlet and the
b	internal length of the rectangular channel profile		four parallel branches
C	a dimension of channel layout	0in	amount of heat entering the tool
C	design parameter of channel separation	0	amount of heat losses from the tool
	confidence interval	Q ₁₀₅₅	amount of heat stored in the tool
c.i.	specific heat	Qst	number of replication or repetition
Cp	internal width of the rectangular channel profile	Ч р	ratio of channel length to the tool curface area
	internal diameter of the singular channel profile	K De	Tatio of challer length to the tool sufface died
D_i		<i>Re</i> _D	Reynolds number according to the hydraulic diameter
D_h	hydraulic diameter of the channel profiles	r	radius of the channel bends
D	a dimension of channel layout	S_{P_j}	sum of the test results containing each parameter at
Ε	modulus of elasticity		each given level
E _{CF}	modulus of elasticity of CF	SS_T	total sum of squared deviations of the test results
F_P	variance ratio of each parameter	SS_P	sum of squared deviations of each parameter
$F(1, f_e)$	value of variance ratio at the DoFs of 1 and f_e from F-ta-	SS _e	sum of squared deviations of the error term
	ble	SS_A , SS_B a	nd SS_C sum of squared deviation of the parameters A, B
ff	Moody, Darcy or Fanning friction factor		and C, respectively
f _{P.}	average performance (or factor effect) of each parame-	Т	temperature
51	ter at each given level	Tm. T~	mould and ambient temperatures
fmax and f	finin maximum and minimum average performance (fac-	Tt. Tmay a	and T_{min} the target and two temperatures higher and
Jinux ana j	tor effect) for each parameter	1, 1 max •	lower than the target temperature at any point
f_{i} and f_{i}	average performance (factor effect) for the parameters A	Т	area-weighted average temperature
JA and JC	and C respectively	T _{ave} T	values of the temperatures for which an average is being
f	total degrees of freedom of the test cases	1 _i	values of the temperatures for which an average is being
JT	degrees of functions of each nerometer		
JP	degree of freedom of each parameter		
Je	degree of freedom of the error term	t_{max} and t_{max}	t_{min} desired heating time for achieving t_{max} and t_{min} at a
f_A , f_B and	f_C degree of freedom of the parameters A, B and C		given point
	respectively	и	fluid velocity
fe	pure degree of freedom of the error term after pooling	Ve	variance of the error term
Н	height of the mould and the tool surface together	V_P	variance (or mean of the squared deviations) of each
H_t	heating time		process parameter
h	thickness of the tool surface	\overline{V}_e	pure variance of the error term after pooling
h _w	heat transfer coefficient between water and channel	W_m	channel separation value
	surface	Xi	values of the response variable or the simulation results
h_t , h_b and	$h_{\rm s}$ heat transfer coefficients at the top, bottom and side	Xont	equivalent value of y_{opt}
<i>t, b</i>	surfaces respectively	Vi	test results (the S/N ratio value of x_i)
i	test case counter	Vn	test results of each parameter at each given level
i	level counter	Vt	expected result of the optimal combination according to
J k	water thermal conductivity	уорг	S/N ratio
к I	ratio between the area and the perimeter of a given tool	7	total number of the tests contains intended parameter
L	curface	2	at a given level
T	Sullide		di di givell'ilevel
L _C		ρ	density of water
Ls	thickness of the side surface	∂_{max}	maximum deflection
L _{hel} , L _{par} a	and L_{zig} lengths of the helical, parallel and zigzag layout	σ_{max}	maximum tensile strength
	channels, respectively	τ_{max}	maximum shear strength
l	internal length of the square channel profile	μ	dynamic viscosity
т	mass flow rate		
N_P	total number of the levels of each parameter		

strategies of heating time per unit mass and on the maximum temperature variation over the tool surface, to identify the most critical performance parameters.

2. Literature survey

Several tool heating technologies, for instance; electric heating, radiation and fluid circulation are being used in the integrallyheated tools [3], but the last technique is considered the most

convenient. Also among different techniques of heated fluid circulation, such as; nanotube heating [14], surface generation [15] and tube circulation or conformal channel method [16], the last is considered to be the most appropriate – see Table 1 [11].

Studies have already been carried out for optimising the geometry of the mould and the channel as well as selecting the proper heating fluid and tool material [17]. The thermal response of an oil-heated tool and the influence of different fluid velocities have been investigated numerically by Ding et al. [18]. They deduced

Download English Version:

https://daneshyari.com/en/article/828933

Download Persian Version:

https://daneshyari.com/article/828933

Daneshyari.com