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a b s t r a c t

Genome-wide association studies with concentrations of hundreds of small molecules in samples
collected from thousands of individuals (mGWAS) access otherwise inaccessible natural genetic exper-
iments and their influence on the metabolic capacities of the human body. By sampling the natural
metabolic and genetic variability that is present in the general population, mGWAS identified over 150
associations between genetic variants and variation in the metabolic composition of human body fluids.
Many of these genetic variants were found to be located in enzyme or transporter coding genes, whose
functions match the biochemical nature of the associated metabolites. Associations identified by mGWAS
can reveal novel biochemical knowledge, such as the function of uncharacterized genes, the biochemical
identity of small molecules, and the structure of entire biochemical pathways. Here we review findings of
recent mGWAS and discuss concrete examples of how their results can be interpreted in a biochemical
context. We describe online resources that are available for mining mGWAS results. In this context, we
present two concepts that also find more general applications in the field of metabolomics: strength-
ening of associations by looking at ratios between metabolite pairs and reconstruction of metabolic
pathways by Gaussian graphical modeling.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Over one hundred fifty years of biochemical and molecular
biology experimentation have helped to uncover the function and
substrate specificities of many enzymes in organisms ranging from
microbes to humans. This knowledge, generated by generations of
biochemists and molecular biologists, fills today's reference vol-
umes on biochemistry. Most early discoveries regarding enzyme
and transporter function and their place on these biochemical
pathway maps were the result of biomolecular experiments, initi-
ated, for example, by the discovery of a microbial strain that lacked
a specific metabolic capacity or the characterization of a human
patient with a rare inborn error of metabolism. These investigations
were generally hypothesis-driven and therefore used targeted
biochemical assays that determined the concentrations of only a
few biochemicals at a time.

This situation changed drastically with the recent advent of
modern, highly sensitive and mass-resolving mass-spectrometers
(MS) and strong nuclear magnetic resonance spectroscopes (NMR)
[1]. Using MS- and NMR-based metabolomics approaches, hun-
dreds and even thousands of small molecules (metabolites) can
now be detected, identified and quantified in any biological sample,
using only micro-liter amounts of fluid or tissue extract [2,3].
Equipped with high-throughput robotic processing capabilities,
modern metabolomics platforms can analyze blood and urine
samples from large population-based epidemiological studies with
thousands of participants. Combined with the availability of high-
throughput genotyping arrays, epidemiological studies are now
generating biochemical hypotheses at a large scale by analyzing
influences of genetic variation on metabolic phenotypes in genetic
association studies [4].

However, biochemistry and epidemiology research rarely over-
lap: Molecular and cell-based assays and in vivo models are
generally implemented to understand the molecular basis of a
disease, while population-based cohort studies, combined with
deep biomedical phenotyping, are applied to identify the predis-
posing factors of the same disease. In our experience, there is little
natural overlap and flow of ideas between these communities. We
therefore review here recent findings from population-based
genome-wide association studies with metabolomics, with the
objective to make these results more readily accessible to bio-
chemists and molecular biologists.

2. Genome-wide association studies with metabolomics

Naturally occurring genetic variation as in inborn errors of
metabolism has the potential to uncover the function, regulation
and substrate specificity of biochemically active proteins, such as
enzymes, solute transporters, and regulators of metabolism. Thus,
the study of rare inborn errors of metabolism with large effects on
metabolic homeostasis led to the identification and characteriza-
tion of many enzymes. Prominent examples are the enzymes
phenylalanine hydroxylase and homogentisate 1,2-dioxygenase,
which were functionally characterized by studying phenylketon-
uria [5] and alkaptonuria [6], respectively. Over 100 years ago,
Archibald Garrod assumed that “inborn errors of metabolism” are
“merely extreme examples of variations of chemical behavior
which are probably everywhere present in minor degrees” and that
this “chemical individuality [confers] predisposition to and im-
munities from the various mishaps which are spoken of as dis-
eases” [6,7]. Epidemiological studies, including the Framingham
Heart Study [8], KORA [9], TwinsUK [10], SHIP [11], the Rotterdam
Study [12], the African Americans in the Atherosclerosis Risk in
Communities (ARIC) Study [13], and many others, collected de-
mographic, health and life-style related information from

thousands of individuals from the general population, and bio-
banked samples of blood, urine, and other body fluids that were
then analyzed using genomics, transcriptomics, proteomics,
metabolomics and other large scale -omics technologies. Genome-
wide genotyping arrays allow for a broad characterization of the
common, naturally occurring genetic variance in these study pop-
ulations. Combined with a comprehensive quantification of the
biochemical composition of matching samples using metab-
olomics, single nucleotide polymorphisms (SNPs) that associate
with even small differences in metabolic phenotypes (metab-
otypes) can then be detected (Fig. 1).

A SNP-metabolite association at a genetic locus is referred to as a
“metabolic quantitative trait locus” (mQTL). Due to the inherent
correlation between metabolites that are on a same biochemical
pathway, there are in general multiple metabolites that associate
with a single genetic variant. Likewise, due to the high correlation
between neighboring genetic variants (also known as linkage
disequilibrium, see [14]), there are in general many SNPs that
associate with the same metabolites at a given locus. The strength
of these associations may vary between studies, dependent on the
population size, the metabolomics platform that is used and other
factors that determine the non-genetic part of the variation of the
metabolic trait.

We call the ensemble of genotype-dependent differences in the
concentrations of one or several metabolites at a genetic locus a
“genetically influenced metabotype” (GIM). It should be born in
mind that SNPs reported in GWAS are generally genotyping-array
based tagging SNPs. These SNPs do not necessarily correspond to
the causative variant that affects a gene function, possibly by
modifying the protein structure through an amino acid change or a
modification of a splice site, or by changing the gene's expression
by altering a transcription factor binding site or a DNA methylation
site. A GIM is thus used as a loosely defined term that refers to the
association of a set of correlated SNPs with a set of correlated
metabolites, possibly detected in multiple studies, where the GIM
might even be labeled with a different putative causative gene.

Today, genome-wide association studies with metabolic traits
(mGWAS) have identified over 150 GIMs [15e27] in general pop-
ulations, confirming Garrod's conjecture in many instances [4].
These “variations of chemical behavior” (GIMs/mQTLs) are clearly
“everywhere present in minor degrees” and represent what
Archibald Garrod referred to as our “chemical individuality”.

3. Properties of genetically influenced metabotypes

A prototype of a GIM is the association of SNP rs174548 (and
correlated SNPs) with arachidonic acid, several biochemically
related omega-3 and omega-6 polyunsaturated fatty acids (PUFAs),
and a large number of PUFA-containing glycerophospholipids,
including phosphatidylcholines, phosphatidylethanolamines, and
phosphatidylinositols [15,17,27,28]. SNP rs174548 is located near
the fatty acid desaturase 1 gene (FADS1). The enzymatic function of
FADS1 is that of a delta-5 desaturase. It inserts a fourth double bond
into dihomolinolenate (C20:3) to form arachidonic acid (C20:4)
(Fig. 1). In the case of the FADS1 GIM, its metabotype consists of
PUFAs that are upstream and downstream of the FADS1 reaction,
and of metabolites that incorporate these PUFAs, i.e. through the
de-novo synthesis of glycerophospholipds in the Kennedy pathway.
Interestingly, one of the strongest associations of SNP rs174548
were observed with the ratio of the product and substrate pair
(C20:4/C20:3) of the FADS1 enzymatic reaction. It can be shown
that, under a number of simplifications, this ratio is proportional to
the conversion rate of the FASD1 reaction [15]. In this case there is,
thus, a perfect match between the function of the gene and the
associated metabolic phenotype. Had the function of FADS1 not
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