FISEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Loquacious-PD removes phosphate inhibition of Dicer-2 processing of hairpin RNAs into siRNAs

Ryuya Fukunaga

Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, 521A Physiology Building, Baltimore, MD, 21205, IISA

ARTICLE INFO

Article history: Received 9 March 2018 Accepted 13 March 2018 Available online 16 March 2018

Keywords: Dicer-2 Loquacious siRNA Inorganic phosphate dsRNA RNA silencing

ABSTRACT

Drosophila Dicer-2 processes RNA substrates into short interfering RNAs (siRNAs). Loquacious-PD (Loqs-PD), a dsRNA-binding protein that associates with Dicer-2, is required for processing of a subset of RNA substrates including hairpin RNAs into siRNAs. Inorganic phosphate—a small molecule present in all cell types—inhibits Dicer-2 from processing precursor of microRNAs (pre-miRNAs), which are processed by Dicer-1. Whether or how Loqs-PD modulates the inhibitory effect of inorganic phosphate on Dicer-2 processing of RNA substrates is unknown. To address this question, I performed in vitro hairpin RNA processing assay with Dicer-2 in the presence or absence of Loqs-PD and/or inorganic phosphate. I found that inorganic phosphate inhibits Dicer-2 alone, but not Dicer-2 + Loqs-PD, from processing blunt-end hairpin RNAs into siRNAs. Thus, Loqs-PD removes the inhibitory effect of inorganic phosphate on Dicer-2 processing of blunt-end hairpin RNAs, allowing siRNA production in the presence of inorganic phosphate.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Dicer enzymes produce microRNAs (miRNAs) and small interfering RNAs (siRNAs). In *Drosophila*, Dicer-1 processes precursor of miRNAs (pre-miRNAs) into miRNAs and Dicer-2 processes long dsRNAs into siRNAs [1].

Endogenous RNA substrates of Dicer-2 to make siRNAs (endosiRNAs) include partially self-complementary hairpin RNA transcripts, transposon RNAs, and dsRNAs derived from convergent transcription of mRNAs (cis-natural antisense transcripts, cis-NAT) [2–6]. The most abundant endo-siRNA in vivo is esi-2.1, a hairpinderived endo-siRNA. This suggests that the esi-2.1 precursor hairpin RNA is a predominant substrate of Dicer-2. Dicer-2 also processes exogenous long dsRNAs derived from viral RNA genomes or intermediates of replication and those introduced artificially into exogenous siRNAs (exo-siRNAs) [1,7].

Dicer-2 has an N-terminal helicase domain, a central dsRNA-binding domain (dsRBD), a platform domain, a PAZ domain, two RNase III domains, and a C-terminal dsRBD (Fig. 1A). The Dicer-2 helicase domain binds and hydrolyzes ATP for processive siRNA production [8,9]. The Dicer-2 PAZ domain has a phosphate-binding

pocket important for high-fidelity production of 21 nt siRNAs, which is important for efficient RNA silencing [10]. Each RNaseIII domain has an RNaseIII active site, and the two RNase active sites cleave dsRNA. The C-terminal dsRBD is crucial for efficient and high-fidelity production of siRNAs [11]. Recent cryo-electron microscopy structures of Dicer-2 showed that Dicer-2 adopts L-shape structure, in which the helicase domain forms the shorter arm and the PAZ, platform, and RNase III domains form the longer arm [12].

Dicer-2 can be bound by a cofactor dsRNA-binding protein Loquacious-PD (Loqs-PD) [13]. Loqs-PD has two dsRBDs (Fig. 1A). The C-terminal region of Loqs-PD binds the Dicer-2 helicase domain [14,15]. Loqs-PD is required for efficient production of a subset of siRNAs in vivo [7,16,17]. Loqs-PD is required for efficient production of hairpin-derived endo-siRNAs (esi-1.1, esi-1.2, and esi-2.1), cis-NAT-derived endo-siRNAs, and exo-siRNAs derived from an inverted repeat transgene [16]. In contrast, Loqs-PD is dispensable for production of transposon-derived endo-siRNAs [16,17] and virus-derived exo-siRNAs from certain RNA viruses [7]. It is unknown why Loqs-PD is crucial for production of only a subset of siRNAs. It is also unknown what distinguishes the substrates that require Loqs-PD for efficient processing and those that do not.

We previously showed that inorganic phosphate—a small molecule found in all cell types—specifically inhibits Dicer-2 from processing precursor of microRNAs (pre-miRNAs) and short

E-mail address: fukunaga@jhmi.edu.

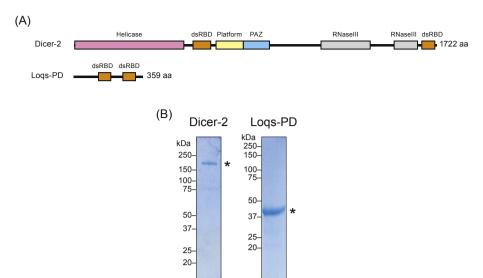


Fig. 1. Recombinant proteins of Drosophila Dicer-2 and Loqs-PD.

- (A) Domain structures of Drosophila Dicer-2 and Logs-PD.
- (B) Coomassie-stained SDS-PAGE gels of purified recombinant Dicer-2 and Loqs-PD proteins.

dsRNAs [8,18]. Recombinant Dicer-2 alone can efficiently process pre-miRNAs into miRNA-like dsRNA products in vitro. Notably, these miRNA-like dsRNA products produced by Dicer-2 are shorter than the biologically relevant miRNAs produced by Dicer-1. Such miRNA-like dsRNA products should not be produced in vivo. In fact, a physiological concentration of inorganic phosphate inhibits Dicer-2 from processing pre-miRNAs and short dsRNAs [8,18]. Phosphate inhibition of Dicer-2 is dose-dependent and specific; inorganic phosphate inhibits neither Dicer-2 from processing long dsRNAs into siRNAs nor Dicer-1 from processing pre-miRNAs into miRNAs, and other anions do not inhibit Dicer-2 from processing pre-miRNAs. These studies suggest that inorganic phosphate binds the phosphate-binding pocket in the Dicer-2 PAZ domain and inhibits access of pre-miRNAs and short dsRNAs to the Dicer-2 PAZ domain, inhibiting their cleavage [18]. However, how inorganic phosphate affects Dicer-2 processing of hairpin RNAs with an intermediate length remains unknown. Whether or how the inhibitory effect of inorganic phosphate on Dicer-2 is modulated by Logs-PD is also unknown.

To address these questions, I performed in vitro esi-2.1 precursor hairpin RNA processing assay with Dicer-2 in the presence or absence of Loqs-PD and/or inorganic phosphate (Dicer-2 \pm Loqs-PD \pm inorganic phosphate). I tested hairpin RNA substrates with distinct end structures (5′ monophosphorylated vs 5′ hydroxyl and blunt end vs 3′ overhang end), considering that RNA substrate end structures play a crucial role in processing by Dicer-2 [9,12,18,19]. I found that inorganic phosphate inhibits Dicer-2 alone, but not Dicer-2 + Loqs-PD, from processing esi-2.1 precursor hairpin RNAs with a blunt end. Thus, Loqs-PD allows Dicer-2 to process blunt-end hairpin RNAs in the presence of inorganic phosphate, which may explain the in vivo requirement of Loqs-PD for production of hairpin-derived endo-siRNAs.

2. Materials and methods

2.1. Recombinant protein purification

Recombinant Dicer-2 and Loqs-PD proteins were purified from Sf9 cells and *E. coli* cells, respectively, as previously described [8,16,18].

2.2. RNA substrates preparation

 32 P-body-labeled hairpin RNAs were prepared using in vitro T7 transcription system in the presence of α -[32 P]ATP (800 Ci/mmol; PerkinElmer) and were gel purified, as previously described [8,16].

2.3. In vitro dicing assays

In vitro RNA processing reactions by Dicer-2 were performed using 100 nM $^{32}\text{P-body-labeled}$ hairpin RNAs, 8 nM Dicer-2 \pm Loqs-PD in the presence or absence of 1 mM ATP and/or 25 mM inorganic phosphate at 25 °C and analyzed as described [8,16,18,20]. Aliquots of the reaction time course were run on denaturing urea-PAGE gels. Dried gels were exposed to image plates and analyzed with an FLA-9000 and ImageGauge 3.0 software (Fujifilm, Tokyo, Japan).

To determine rates of reaction, substrate processed versus time was fit to $y = y_0 + A(1 - e^{-kt})$, where $dy/dt = Ake^{-kt}$ using Igor Pro 6.31 (WaveMetrics, Lake Oswego, OR, USA). When t = 0, dy/dt = Ak; k gives the initial rate of reaction [21].

2.4. Statistical test

Statistical tests were performed using unpaired two-tailed Student's t-test using data obtained from three independently performed experiments. P-value <0.05 was used as a threshold for statistical significance.

3. Results

3.1. Dicer-2 requires ATP to process hairpin RNAs

To perform in vitro hairpin RNA processing assay with Dicer- $2 \pm \text{Loqs-PD} \pm \text{inorganic}$ phosphate, I purified recombinant Dicer-2 protein from Sf9 cells and recombinant Loqs-PD protein from *E. coli* cells (Fig. 1B). For substrates, I prepared four esi-2.1 endo-siRNA precursor hairpin RNAs with 64 or 62 bp long stems [6]. The hairpin RNAs tested have one of four chemically distinct structures: (1) a 5' monophosphorylated blunt end, (2) a 5' hydroxyl blunt end, (3) a 5' monophosphorylated, 3' 2-nt overhang end, and (4) a 5' hydroxyl, 3' 2-nt overhang end (Fig. 2). I performed in vitro RNA

Download English Version:

https://daneshyari.com/en/article/8293381

Download Persian Version:

https://daneshyari.com/article/8293381

<u>Daneshyari.com</u>