FISEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

The melatonin-MT1 receptor axis modulates tumor growth in *PTEN*-mutated gliomas

Huihui Ma ^{a, b, d, 1}, Zhen Wang ^{a, b, c, 1}, Lei Hu ^{a, b}, Shangrong Zhang ^{a, c}, Chenggang Zhao ^{a, b, c}, Haoran Yang ^{a, b, c}, Hongzhi Wang ^{a, c}, Zhiyou Fang ^{a, c}, Lijun Wu ^{b, e}, Xueran Chen ^{a, c, *}

- ^a Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, China
- ^b University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230026, China
- ^c Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, China
- d Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 81, Mei Shan Road, Hefei, Anhui, 230032, China
- ^e Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031. China

ARTICLE INFO

Article history: Received 26 January 2018 Accepted 2 February 2018

Keywords: Glioma MT1 Melatonin PTEN

ABSTRACT

More than 40% of glioma patients have tumors that harbor *PTEN* (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and *in vivo*. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type *PTEN*. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Glioma is the most common malignancy of the central nervous system, and has a high recurrence rate and poor prognosis [1-3]. This is because of the rapid and uncontrolled proliferation and high invasiveness of glioma cells [4-6]. Therefore, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed.

Melatonin is an endogenously produced hormone secreted by the

pineal gland and the retina [7,8]. Within the body, the highest concentration of melatonin is in the brain [9,10]. As reported, melatonin plays an important role in regulating various physiological processes such as circadian rhythms, body temperature, seasonal reproduction, and inflammatory responses [11,12]. Most importantly, the potential benefits of melatonin have been evaluated based on their inhibitory effects on many cancer types such as breast, colon, and gastric [13–15]. However, the inhibitory effect of melatonin on glioma cell proliferation is somewhat controversial. In 2006, Martín et al. reported that melatonin suppresses glioma cell proliferation both in vitro and in vivo, and this was related to its inhibitory effect on key intracellular effectors such as PKC and NF-kB [16]. However, other studies indicated that melatonin did not induce glioma cell death and affect viability [17,18]. These differences in results could be attributed to different cellular genetic backgrounds, which might affect melatonin inhibitory responses in glioma patients.

^{*} Corresponding author. Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, China.

E-mail address: xueranchen@cmpt.ac.cn (X. Chen).

¹ Huihui Ma and Zhen Wang contributed equally to this article.

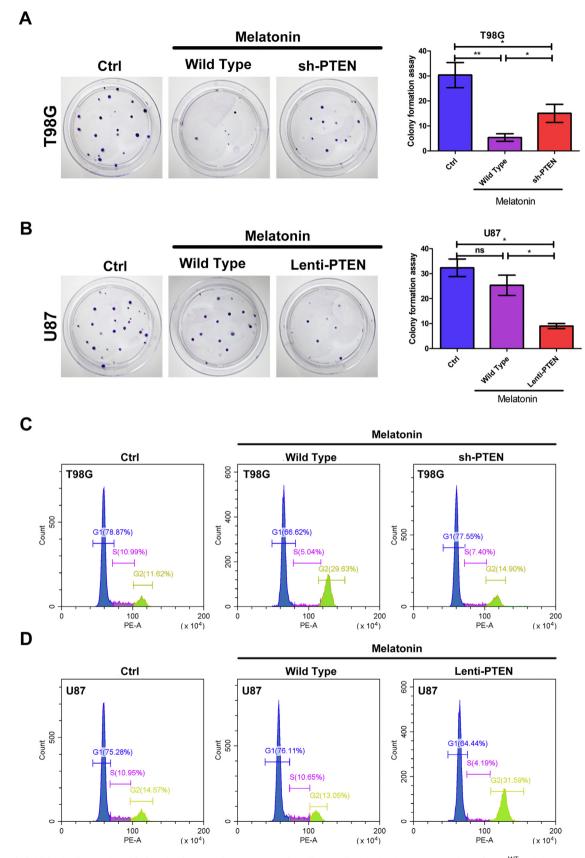


Fig. 1. Melatonin inhibited cell growth and induced G2/M arrest in PTEN-expressing glioma cells. (A) Clonal expansion analysis of PTEN^{WT} and sh-PTEN T98G cells with or without 48-hour melatonin (1 mM) treatment. (B) Clonal expansion analysis of PTEN-deficient and Lenti-PTEN U87 cells with or without 48-hour melatonin (1 mM) treatment. Data for each system are from at least three independent experiments. Data are shown as mean \pm s.e.m. *P < 0.05; **P < 0.01; ns, not significant. (C) Cell cycle analysis of PTEN and sh-PTEN T98G cells with or without 48-hour melatonin (1 mM) treatment. (D) Cell cycle analysis of PTEN-deficient and Lenti-PTEN U87 cells with or without 48-hour melatonin (1 mM) treatment.

Download English Version:

https://daneshyari.com/en/article/8294617

Download Persian Version:

https://daneshyari.com/article/8294617

<u>Daneshyari.com</u>