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a b s t r a c t

A two-dimensional numerical model of microstructural effects is presented, with an aim to understand
the mechanical performance in polycrystalline materials. The microstructural calculations are firstly car-
ried out on a square lattice by means of a 2-D Monte Carlo (MC) simulation for grain growth, then the
conventional finite element method is applied to perform stress analysis of a plane strain problem.
The mean grain size and the average stress are calculated during the MC evolution. The simulation result
shows that the mean grain size increases with the simulation time, which is about 3.2 at 100 Monte Carlo
step (MCS), and about 13.5 at 5000 MCS. The stress distributions are heterogeneous in materials because
of the existence of grains. The mechanical property of grain boundary significantly affects the average
stress. As the grains grow, the average stress without grain boundary effect slightly decreases as the sim-
ulation time, while the one with strengthening effect significantly decreases, and the one with weakening
effect increases. The average stress and the grain size agree well with the Hall–Petch relationship.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many materials, such as metallic alloys and ceramic composites
used in engineering, have polycrystalline microstructures. It is well
known that the material microstructure plays an important role in
understanding the macroscopic response of real materials. The
morphological characteristics of the materials, e.g., the size, shape,
and orientation often govern their mechanical, physical, and chem-
ical properties. A good understanding of the microstructure evolu-
tion during the preparation process such as sintering is required for
optimizing the performance of the materials. The experimental
methods for characterizing microstructure are usually achieved
by means of scanning electron microscope (SEM) of the morphol-
ogy of cross-section and fracture surface. However, the experimen-
tal measurements may consume a lot of time, and require
high-resolution microscope equipments and high-quality material
samples to characterize the microstructures.

During the last few decades, the researchers have made great
progresses in modeling and simulating microstructure evolution
using various computational approaches such as cellular-
automaton [1–3], phase-field [4,5], and Monte Carlo (MC) [3,6,7]
methods. The MC method is one of the most important methods
owing to its simplicity and flexibility. Potts model was firstly em-
ployed to simulate the grain growth in two dimensions by Ander-
son and Srolovitz [8,9], and then many other researchers devoted
to investigate the microstructure evolution of materials with single
phase [6,10–12], two phases [13,14], or multiple phases [15], using
MC or modified MC methods [3,16,17]. In addition, some mechan-
ics can be quantificationally estimated by analyzing the field vari-
ables of materials undertaking loads using the finite element
method (FEM). Guan and Geng [18] analyzed the stress distribu-
tion of a polycrystalline material with cavities on grain boundaries
by FEM. Vedula et al. [19] predicted residual stresses and sponta-
neous microcracking upon cooling in polycrystalline alumina. Mori
et al. [20] proposed a micro–macro method for simulating a sinter-
ing process of ceramic powder compacts based on the Monte Carlo
and the finite element method. However, there is few systematic
research on the effect of microstructure characteristics such as
the size and number of grains on the stress response of the
materials.
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The purpose of the present study is to investigate the mechan-
ical performance of polycrystalline microstructures by combining
the MC method and the finite element method. The remainder of
this paper is organized as follows: Section 2 is devoted to a descrip-
tion of computational methods about Monte Carlo techniques and
the finite element analysis. Section 3 gives the numerical results
and discussion, and conclusions are summarized in Section 4.

2. Computational methods

2.1. Monte Carlo simulation

The application of the Monte Carlo technique to simulate grain
growth has been described in detail [6,8,9,11,21], thus only the
essential feature of this technique is addressed here. In the Monte
Carlo approach the whole computational domain is discretised into
a set of lattice grids, and a continuum microstructure is mapped
onto the discretised domain. Each lattice grid, which belongs to a
grain, is assigned with a random orientation number between 1
and Q, where Q is the total number of grain orientations. In this pa-
per, the value of Q is 48. A grain is defined by a collection of grids
that have the same orientation number. The grain boundary energy
is specified by defining an interaction between nearest neighbor
grids. Read and Shockley [22] derived an analytical expression
V(h) for the free energy of a low angle grain boundary to describe
the grain boundary energy. V(h) is given as follows:

VðhÞ ¼ J h0

h� ½1� lnðh0h�Þ�; h0 < h�

J; h P h�

(
ð1Þ

where J is a positive constant which sets the scale of the grain

boundary energy, h0 ¼ jhj; 0 6 jhj 6 p
2p� jhj; p 6 jhj 6 2p

�
. h⁄ is the value of

misorientation parameter, h, above which grain boundaries are con-
sidered to be high angle.

The local interaction energy, Eloc, as a function of the grain mis-
orientation across the boundary is calculated by the Hamiltonian
which sums the interfacial energy of the neighbor grids:

Eloc ¼
Xn

j¼1

VðhÞð1� dSiSj
Þ ð2Þ

where h = 2p(Si � Sj)/Q, d is the Kronecker’s delta function, Si the ori-
entation of lattice grid i, Sj represents the orientations of its nearest
neighbors, and n the total number of the nearest neighbor grids.

The kinetics of the grain boundary migration are simulated by
judging the change of attempted orientation based on the energy
change, and the probability of orientation change is defined as:

P ¼
1; DE 6 0
expð�DE=kBTÞ; DE > 0

�
ð3Þ

where DE is the change of energy, kB the Boltzmann constant, and T
the temperature.

2.2. Monte Carlo algorithm

A 2-D problem is considered for the sake of simplicity. An iter-
ative procedure applied to perform the grain growth is given as
follows:

(1) Generate a two dimensional N1 � N2 lattice grids as men-
tioned above, where N1, N2 are numbers of the discretised
lattice points in two directions.

(2) Assign each of the lattice grids a random orientation number
termed as Si.

(3) Select a trial grid (ix, iy) in the lattice and note its orientation
as Siold.

(4) Find the neighbors of the selected grid.
(5) Calculate local interaction energy (Eloc1) before reorientation

by Eq. (2).
(6) Generate randomly a new trial orientation number of the

selected grid, and note it as Sinew.
(7) Calculate local interaction energy (Eloc2) at the new trial ori-

entation state by Eq. (2).
(8) Calculate the energy change (DE) between Eloc1 and Eloc2.
(9) Calculate the probability of orientation change by Eq. (3) to

judge the reorientation. If DE � 0, accept the reorientation,
and change the initial orientation (Siold) to attempted orien-
tation (Sinew). If DE > 0, then generate a random number p
between 0 and 1, if P P p, accept the reorientation, restore
the orientation otherwise. Repeating (3–9) steps for all the
lattice grids to finish a Monte Carlo step (MCS), correspond-
ing to N1 � N2 reorientation attempts. The simulation time is
measured in terms of MCS. The above steps are repeated
until the desired step number is reached.

2.3. Finite element analysis

2.3.1. Basic equation
In the numerical computation of mechanical behaviors of poly-

crystalline materials, we apply fundamental equations of elasticity
theory including equilibrium equations, kinematics equations, and
constitutive equations.

Consider a body X � R2 with boundary C. The equilibrium
equations and boundary conditions are given by

r � rþ b ¼ 0; in X

u ¼ �u;on Cu

r � n ¼ �t;on Ct

ð4Þ

where n is the unit outward normal, r the Cauchy stress, and b the
body force per unit volume. The kinematics equations consist of the
strain–displacement relation

e ¼ eðuÞ ¼ reu ð5Þ

where re is the symmetric part of the gradient operator. The con-
stitutive relation is given by Hooke’s law.

r ¼ C : e ð6Þ

where C is the Hooke’s elasticity tensor.

Fig. 1. Mesh.
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