ELSEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Specific inhibition of hepatitis C virus entry into host hepatocytes by fungi-derived sulochrin and its derivatives

Syo Nakajima ^{a,b}, Koichi Watashi ^{a,b,*}, Shinji Kamisuki ^b, Senko Tsukuda ^{a,c}, Kenji Takemoto ^b, Mami Matsuda ^a, Ryosuke Suzuki ^a, Hideki Aizaki ^a, Fumio Sugawara ^b, Takaji Wakita ^a

- ^a Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- ^b Tokyo University of Science Graduate School of Science and Technology, Noda 278-8510, Japan
- ^c Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako 351-0198, Japan

ARTICLE INFO

Article history: Received 5 September 2013 Available online 5 October 2013

Keywords: HCV Entry Sulochrin Natural product Screening Compound

ABSTRACT

Hepatitis C virus (HCV) is a major causative agent of hepatocellular carcinoma. Although various classes of anti-HCV agents have been under clinical development, most of these agents target RNA replication in the HCV life cycle. To achieve a more effective multidrug treatment, the development of new, less expensive anti-HCV agents that target a different step in the HCV life cycle is needed. We prepared an in-house natural product library consisting of compounds derived from fungal strains isolated from seaweeds, mosses, and other plants. A cell-based functional screening of the library identified sulochrin as a compound that decreased HCV infectivity in a multi-round HCV infection assay. Sulochrin inhibited HCV infection in a dose-dependent manner without any apparent cytotoxicity up to 50 μ M. HCV pseudoparticle and trans-complemented particle assays suggested that this compound inhibited the entry step in the HCV life cycle. Sulochrin showed anti-HCV activities to multiple HCV genotypes 1a, 1b, and 2a. Cotreatment of sulochrin with interferon or a protease inhibitor telaprevir synergistically augmented their anti-HCV effects. Derivative analysis revealed anti-HCV compounds with higher potencies (IC $_{50}$ < 5 μ M). This is the first report showing an antiviral activity of methoxybenzoate derivatives. Thus, sulochrin derivatives are anti-HCV lead compounds with a new mode of action.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Hepatitis C virus (HCV) infection is a major causative agent of chronic liver diseases such as liver cirrhosis and hepatocellular carcinoma [1]. The standard anti-HCV therapy has been a co-treatment with pegylated-interferon (IFN) α and ribavirin, but this therapy is limited by less efficacy to certain HCV genotypes, poor tolerability, serious side effects, and high cost [2,3]. In addition to the newly approved protease inhibitors, telaprevir and boceprevir, a variety of anti-HCV candidates are under clinical development. Although these drugs improve the virological response rate, the emergence of drug-resistant virus is expected to be a significant problem. Moreover, these compounds are expensive due to their complex structure and the many steps required for their total syn-

Abbreviations: HCV, hepatitis C virus; IFN, interferon; HCVpp, HCV pseudoparticle; HCVcc, HCV derived from cell culture; HCVtcp, HCV trans-complemented particle; MOI, multiplicity of infection; HBs, HBV envelope protein; CsA, cyclosporin A; VSV, vesicular stomatitis virus.

E-mail address: kwatashi@nih.go.jp (K. Watashi).

thesis. To overcome the drug-resistant virus and achieve a long-term antiviral effect, multidrug treatment is essential. Thus, the development of drugs targeting a different step in the HCV life cycle and presumably requiring low cost is urgently needed.

HCV propagates in hepatocytes through its viral life cycle including: attachment and entry (defined as the early step in this study); translation, polyprotein processing, and RNA replication (the middle step); and assembly, trafficking, budding, and release (the late step) (Supplementary Fig. S1). The middle step has been extensively analysed, especially after the establishment of the HCV replicon system [4]. The early step can be analysed with HCV pseudoparticle (HCVpp) [5,6], which is a murine leukemia virus- or human immunodeficiency virus-based pseudovirus carrying HCV E1 and E2 as envelope proteins. The HCV-producing cell culture system (HCVcc) is used for analyzing the whole life cycle [7–9]. In addition, the HCV trans-complemented particle (HCVtcp) system carrying an HCV subgenomic replicon RNA packaged in HCV E1 and E2-containing particles can evaluate the life cycle from the early to the middle step [10]. The majority of anti-HCV agents currently under clinical development, such as inhibitors of protease, polymerase, NS5A, and cellular cyclophilin, inhibit polyprotein processing and/or RNA replication. A desirable approach

^{*} Corresponding author. Adress: Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan. Fax: +81 3 5285 1161.

to achieving efficient multidrug therapy is to identify new antiviral drugs targeting different steps in the viral life cycle. A combination of drugs with different targets can greatly decrease the emergence of drug-resistant virus.

Natural products generally contain more characteristics of high chemical diversity than combinatorial chemical collections, and therefore have a wider range of physiological activities [11,12]. They offer major opportunities for finding novel lead structures that are active in a biological assay. Moreover, biologically active natural products are generally small molecules with drug-like properties, and thus development costs of producing orally active agents tend to be lower than that derived from combinatorial chemistry [13]. In addition, there is a wide variety of natural compounds reported to possess antiviral activity [14,15]. In the present study, we have taken advantage of the potential of natural products by screening a natural product library derived from fungal extracts with a cell-based assay that supports the whole life cycle of HCV.

2. Materials and methods

2.1. Cell culture

Huh-7.5.1 [8] and HepaRG cells [16] were cultured as described previously.

2.2. Natural product library and reagents

Natural products were extracted essentially as previously described [17]. Culture broths of fungal strains isolated from seaweeds, mosses, and other plants were extracted with CH₂Cl₂. The crude extracts were separated by silica gel column chromatography to purify compounds. The chemical structure of each compound was determined by NMR and mass spectrometry analyses. Thus, we prepared an in-house natural product library consisting of approximately 300 isolated compounds.

Cyclosporin A was purchased from Sigma. Bafilomycin A1 and chlorpromazine were purchased from Wako. Heparin was obtained from Mochida Pharmaceutical. IFN α was purchased from Schering-Plough.

2.3. Compound screening

Huh-7.5.1 cells were treated with HCV J6/JFH1 at a multiplicity of infection (MOI) of 0.15 for 4 h. The cells were washed and then cultured with growth medium treated with 10 μM of each compound for 72 h. The infectivity of HCV in the medium was quantified. Cell viability at 72 h post-treatment was simultaneously measured. Compounds that decreased the cell viability to less than 50% of that without treatment were eliminated for further evaluations. Normalised infectivity was calculated as HCV infectivity divided by cell viability. Compounds reducing the normalised infectivity to less than 40% were selected as initial hits. The initial hits were further evaluated for data reproduction and dose-dependency.

2.4. HCVcc assay

HCVcc was recovered from the medium of Huh-7.5.1 cells transfected with HCV J6/JFH-1 RNA as described [7]. HCVcc was infected into Huh-7.5.1 cells at 0.15 MOI for 4 h. After washing out the inoculated virus, the cells were cultured with normal growth medium in the presence or absence of compounds for 72 h. The infectivity of HCV and the amount of HCV core protein in the medium were quantified by infectious focus formation assay and

chemiluminescent enzyme immunoassay (Lumipulse II HCV core assay, ortho clinical diagnostics), respectively [7,18].

2.5. Immunoblot analysis

Immunoblot analysis was performed as described previously [19]. The anti-HCV core antibody (2H9) was used as a primary antibody with 1:1000 dilution [7].

2.6. MTT assay

The viability of cells was quantified by using a Cell Proliferation Kit II XTT (Roche Diagnostics) as described previously [20].

2.7. HCV replicon assay

Huh-7.5.1 cells were transfected with an HCV subgenome replicon RNA (SGR–JFH1/Luc) for 4 h and then incubated with or without compounds for 48 h [21]. The cells were lysed with 1xPLB (Promega), and the luciferase activity was determined with a luciferase assay system (Promega) according to the manufacturer's protocol [22].

2.8. HCVpp assay

HCVpp was recovered from the medium of 293T cells transfected with expression plasmids for HCV JFH-1 E1E2, MLV Gag-Pol, and luciferase, which were kindly provided from Dr. Francois-Loic Cosset at Universite de Lyon [5]. Vesicular stomatitis virus pseudoparticles (VSVpp) was similarly recovered with transfection by replacing HCV E1E2 with VSV G.

Huh-7.5.1 cells were preincubated with compounds for 3 h and were then infected with HCVpp in the presence of compounds for 4 h. After washing out virus and compounds, cells were incubated for an additional 72 h before recovering the cell lysates and quantifying the luciferase activity.

2.9. HCVtcp assay

The HCVtcp assay was essentially performed as described [10]. Briefly, Huh-7 cells were transfected with expression plasmids for the HCV subgenomic replicon carrying the luciferase gene and for HCV core-NS2 based on genotype 1a (RMT) (kindly provided by Dr. Michinori Kohara at Tokyo Metropolitan Institute of Medical Science), 1b (Con1), and 2a (JFH-1) [4,10,23] to recover HCVtcp. HCVtcp can reproduce RNA replication as well as HCV-mediated entry into the cells [10].

2.10. Synergy analysis

To determine whether the effect of the drug combination was synergistic, additive, or antagonistic, MacSynergy (kindly provided by Mark Prichard), a mathematical model based on the Bliss independence theory, was used to analyse the experimental data shown in Fig. 3A. In this model, a theoretical additive effect with any given concentrations can be calculated by Z = X + Y(1-X), where X and Y represent the inhibition produced by each drug alone, and Z represents the effect produced by the combination of two compounds if they were additive. The theoretical additive effects were compared to the actual experimental effects at various concentrations of the two compounds and were plotted as a threedimensional differential surface that would appear as a horizontal plane at 0 if the combination were additive. Any peak above this plane (positive values) indicates synergy, whereas any depression below the plane (negative values) indicates antagonism. The 95% confidence interval of the experimental dose-response was considered to reveal only effects that were statistically significant.

Download English Version:

https://daneshyari.com/en/article/8297665

Download Persian Version:

https://daneshyari.com/article/8297665

<u>Daneshyari.com</u>