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Available online 23 August 2014 of terminal electron acceptor that it supports for growth. Here we critically dissect current knowledge pertaining

to REMPs of the nitrate reductase delta superfamily, specifically recognized in Escherichia coli to include Nar],
NarW, TorD, DmsD, and YcdY, also referred to as the Nar] REMP subfamily. We show that Nar] subfamily mem-

lli?ﬁ)f?riyme maturation protein bers share sequence homology and similar structural features as revealed by alignments performed on structur-
Respiratory enzyme biogenesis ally characterized REMPs. We include an updated phylogenetic analysis of subfamily members, justifying their
Complex iron-sulfur molybdoenzyme classification in this subfamily. The structural and functional roles of each member are presented herein and
Protein folding and enzyme maturation these discussions suggest that although NarJ subfamily members are related in sequence and structure, each
Twin-arginine translocation member demonstrates remarkable uniqueness, validating the concept of system-specific chaperones.
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1. Introduction variety of substrates as a terminal electron acceptor for respiration

1.1. Anaerobic respiration in bacteria

Respiratory redox enzymes catalyze oxidation/reduction reactions
by transferring electrons from a donor to an acceptor molecule. Many
respiratory enzymes operate at the cytoplasmic membrane by forming
aredox loop between periplasmic and cytoplasmic enzymes connected
by the quinone pool [1,2]. In addition to oxygen, bacteria can utilize a

in anaerobic environments. A well characterized example of this is the
facultative model organism, Escherichia coli, which has a variety of
known anaerobic electron acceptors that include nitrate (NO3), nitrite
(NO3"), dimethyl sulfoxide ((CH3),SO, DMSO), fumarate (C4H404), and
trimethylamine N-oxide ((CHs)sNO, TMAO) [2].

The respiratory enzymes that catalyze reduction of DMSO, TMAO,
and nitrate are grouped under the molybdoenzyme superfamily [3-8].
They all contain a molybdenum-bis( pyranopterin guanine dinucleotide)
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Fig. 1. Complex iron sulfur molybdoenzymes in bacteria. a) Structures of the catalytic cofactor Mo-bisPGD and the iron-sulfur cluster (typically [4Fe-4S]) found in a bacterial CISM.
b) Example of how Mo-bisPGD and [4Fe-4S] is coordinated in the NarG catalytic subunit of E. coli nitrate reductase A (PDB ID: 1Q16). The Mo atom (red) is coordinated by the two
pyranopterins (yellow) and the carboxylate group of Asp222 (blue). Proximity of the [4Fe-4S] to Mo-bisPGD is also shown (orange). ¢) Maturation pathway of a typical three-subunit
CISM begins with protein translation from the ribosome. The large catalytic subunit is synthesized with a twin-arginine (RR) leader peptide and folding is aided by general molecular chap-
erones and likely its cognate REMP. It is bound by the REMP chaperone at the RR-leader and folding is assisted along with insertion of the Mo-bisPGD cofactor, which was synthesized by
the molybdenum cofactor biosynthesis pathway proteins. At the same time, the small accessory subunit is translated, folded, and its [Fe-S] iron-sulfur cluster(s) are coordinated. The two
subunits come together to and are targeted towards the Tat machinery by the REMP by a ‘piggyback’ or ‘hitchhiker’ mechanism. The complex is translocated across the cytoplasmic mem-
brane and RR-leader is cleaved by leader peptidase I (LepB). The subunits attach to its membrane anchor subunit, which was inserted into the cytoplasmic membrane via the YidC pathway
that may or may not involve the SecYEG translocon. The redox loop is completed through transfer of electrons via the quinone pool, consisting of ubiquinone (Q), menaquinone (MQ), and
demethyl-menaquinone (DMQ) in the cytoplasmic membrane.
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