ELSEVIER

Contents lists available at ScienceDirect

BBA - General Subjects

journal homepage: www.elsevier.com/locate/bbagen

Ablation of *N*-acetylglucosaminyltransferases in *Caenorhabditis* induces expression of unusual intersected and bisected N-glycans

Shi Yan (闫石)^{a,b}, Huijie Wang (王慧捷)^a, Harry Schachter^c, Chunsheng Jin (金春生)^d, Iain B.H. Wilson^{a,*}, Katharina Paschinger^a

- ^a Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
- ^b Institut für Parasitologie, Veterinärmedizinische Universität Wien, 1210 Wien, Austria
- ^c Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- ^d Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden

ARTICLE INFO

Keywords: N-glycans Nematode Glycomics

ABSTRACT

The modification in the Golgi of N-glycans by N-acetylglucosaminyltransferase I (GlcNAc-TI, MGAT1) can be considered to be a hallmark of multicellular eukaryotes as it is found in all metazoans and plants, but rarely in unicellular organisms. The enzyme is key for the normal processing of N-glycans to either complex or paucimannosidic forms, both of which are found in the model nematode Caenorhabditis elegans. Unusually, this organism has three different GlcNAc-TI genes (gly-12, gly-13 and gly-14); therefore, a complete abolition of GlcNAc-TI activity required the generation of a triple knock-out strain. Previously, the compositions of N-glycans from this mutant were described, but no detailed structures. Using an off-line HPLC-MALDI-TOF-MS approach combined with exoglycosidase digestions and MS/MS, we reveal that the multiple hexose residues of the N-glycans of the gly-12;gly-13;gly-14 triple mutant are not just mannose, but include galactoses in three different positions (β -intersecting, β -bisecting and α -terminal) on isomeric forms of Hex₄₋₈HexNAc₂ structures; some of these structures are fucosylated and/or methylated. Thus, the N-glycomic repertoire of Caenorhabditis is even wider than expected and exhibits a large degree of plasticity even in the absence of key glycan processing enzymes from the Golgi apparatus.

1. Introduction

N-glycans probably represent the most diverse range of post-translational modifications of proteins, whereby the linkage of oligosaccharides to asparagine residues is known in many bacteria or archaea and in almost all eukaryotes [1]. The heterogeneity of N-glycan structures in most eukaryotes is due to processing events in the Golgi apparatus. In multicellular organisms, three glucose and up to four α1,2-mannose residues are removed prior to the 'rebuilding' of the oligosaccharide by glycosyltransferases; a key enzyme, thereby, is Nacetylglucosaminyltransferase I (GlcNAc-TI, EC 2.4.1.101, encoded in mammals by mgat1 genes), which appears to be absent from most unicellular eukaryotes [2]. The biological phenotypes caused by ablation of mgat1 genes vary from altered susceptibility to stress in plants or to bacteria in Caenorhabditis elegans through to cell migration or neuronal defects in invertebrates and, most severely, embryonic lethality in mice [3-8]. The glycomic changes in mgat1 mutants are always significant, as Man₅GlcNAc₂ is no longer normally processed. In plants,

flies and mammals, this also means that core fucosylation is heavily reduced in keeping with assays showing that the relevant enzymes are dependent, at least *in vitro*, on the prior action of GlcNAc-TI [9–11].

Unusually, *C. elegans* possesses three GlcNAc-TI genes (gly-12, gly-13 and gly-14), all of which have been proven to be enzymatically active and all of which need to be deleted in order to abolish GlcNAc-TI activity $in\ vivo\ [12,13]$. The three products of the differentially-expressed genes have slightly different substrate specificities in that they can either accept Man₃GlcNAc₂ or Man₅GlcNAc₂, in contrast to the homologues from most other organisms which can transfer GlcNAc to both. A previous MALDI-TOF MS-based screen of the gly-12; gly-13; gly-14 triple knock-out did indeed indicate fucosylation of glycans with compositions suggestive of oligomannosidic structures [13]; however, our recent off-line MALDI-TOF MS data demonstrate that not all hexose residues in C. $elegans\ N$ -glycans are mannose, as bisecting β -galactose on the core β -mannose and an α -galactose modification of the α 1,3-mannose have been found [14]. As part of our continuing studies on the diversity of wild-type and mutant C. $elegans\ N$ -glycomes, we have

E-mail address: iain.wilson@boku.ac.at (I.B.H. Wilson).

^{*} Corresponding author.

reappraised that of the gly-12; gly-13;gly-14 triple knock-out and reveal that also this mutant expresses unusual N-glycans containing up to three galactose substitutions of mannose residues.

2. Methods

2.1. Biological material

The *C. elegans gly-12;gly-13;gly-14* strain (*gly-14* (III);*gly-12 gly13* (X)) was previously prepared as described by crossing the *gly-12(id47)*, *gly-13(ok712)* and *gly-14(id48)* alleles [13] and was maintained under standard conditions; mixed stages were cultivated at 20 °C (160 rpm; 4–6 days) in liquid culture with *E. coli* OP50 in standard S complete medium prior to harvesting and purification by sucrose density centrifugation [15]. Harvested worms were boiled in water for 10 min to heat-inactivate proteases prior to homogenisation. The homogenates were transferred in glass flasks and pepsinised overnight at 37 °C. Glycopeptides were purified by cation exchange chromatography (Dowex 50 W \times 8; elution with 0.5 M ammonium acetate, pH 6) followed by G25 gel filtration.

2.2. N-glycan release, purification and labelling

Enzymatic release of N-glycans from worm peptic glycopeptides was done sequentially using two different peptide:N-glycosidases: first recombinant PNGase F (Roche) was employed under alkaline conditions (pH 8.0) and the released glycans were separated from the remaining glycopeptides on Dowex $50\,\mathrm{W}\times8$ (10 ml resin, with glycans in the 2% acetic acid 'wash' and glycopeptides in the 0.5 M ammonium acetate eluate). The glycopeptide fraction was desalted, lyophilised and taken up in pH 5.0 buffer prior to treatment with native almond PNGase A (Roche; at pH 5.0) and another round of Dowex $50\,\mathrm{W}\times8$ chromatography. Both N-glycan pools were separately purified by solid-phase extraction using non-porous graphitised carbon (nPGC; elution with 40% acetonitrile) and LiChroprep® RP-18 (C18; elution with water) prior to pyridylamination as previously described [16–18]. For a fuller description, refer to the Supplement.

2.3. Mass spectrometric analysis

The N-glycomes of the different strains were profiled by MALDI-TOF MS (Autoflex Speed, Bruker Daltonics, Germany) in positive ion mode using FlexControl 3.4 software. PA-labelled N-glycans were fractionated by 2D-HPLC as described below and all HPLC peaks were collected and examined by MALDI-TOF MS, using 6-aza-2-thiothymine (ATT) as matrix; MS/MS to confirm the composition of all proposed structures was performed by laser-induced dissociation (the typical precursor ion selector window of \pm 0.6% being adjusted as considered appropriate for samples containing multiple glycans). The detector voltage was generally set at 1977 V for MS and 2133 V for MS/MS; 1000-3000 shots from different regions of the sample spots were summed. Spectra were processed with the manufacturer's software (Bruker Flexanalysis 3.3.80) using the SNAP algorithm with a signal/ noise threshold of 6 for MS (unsmoothed) and 3 for MS/MS (four-times smoothed). In total approximately 3500 MS and MS/MS spectra were manually interpreted on the basis of the mass, fragmentation pattern and results of chemical and enzymatic treatments; isomeric structures present in different 2D-HPLC fractions were defined on the basis of comparisons of the aforementioned parameters. At least five MS/MS fragment ions were used to aid definition of each of the structures. LC-MSⁿ was performed on a Gal₃Man₄GlcNAc₂ structure as well as two Man₇GlcNAc₂ isomers as previously described [14].

2.4. HPLC purification of N-glycans

Separation of PA-labelled glycans was carried out on a Shimadzu

HPLC system equipped with a fluorescence detector (RF 10 AXL). First the glycans were fractionated by NP-HPLC using a Tosoh Amide-80 column (4.6 \times 250 mm); dried samples were taken up in 50 μ l of a 25:75 mixture of buffer A (10 mM ammonium formate, pH 7) and buffer B (95% acetonitrile) prior to injection and the following gradient was applied: 0-5 min, 75% B; 5-15 min, 75-65% B; 15-40 min, 65% B; 40-55 min, 65-57% B; followed by a return to the starting conditions. Selected fractions were then subject to RP-HPLC on a Hypersil ODS column (5 μm , 4 \times 250 mm; Agilent), whereby buffer C was 0.1 M ammonium acetate, pH 4, and buffer D was 30% (ν/ν) methanol. Gradients of increasing methanol (1% buffer D per minute) were applied. Fluorescence was recorded at 320 nm (excitation) and 400 nm (emission). The columns were calibrated daily in terms of glucose units (g.u.) with a pyridylaminated partial dextran hydrolysate. Various modifications of N-glycans have different effects on retention time as compared to the 'parent' structure: α 1,3-fucose and α 1,6-fucose resulting in either 2 g.u. earlier or 3 g.u. later RP-HPLC elution; bisecting galactose in 3 g.u. earlier elution on RP-HPLC; intersecting galactose in 1 g.u. earlier elution on RP-HPLC; methylation in 0.3 g.u. earlier on NP-HPLC, but later elution on RP-HPLC.

2.5. Structural elucidation using exoglycosidases and chemical treatment

In general, a 1 µl aliquot of a previously dried and redissolved HPLC fraction was mixed with 0.2 µl exoglycosidase and 0.8 µl 100 mM ammonium acetate solution, pH 5.0; after an overnight incubation at 37 °C, $0.5\,\mu l$ aliquot of the mixture was analysed by MALDI-TOF MS. Exoglycosidases employed were: α -galactosidase from green coffee beans (Sigma, 11 mU), recombinant β-galactosidase from Aspergillus niger (produced in-house, 144 μU), Aspergillus α1,2-specific mannosidase (Prozyme, 4 μU), jack bean α-mannosidase (either from Sigma-Aldrich, 6.25 mU, New England Biolabs, 400 mU, or Prozyme, 30 mU), recombinant Xanthomonas manihotis α1.2/3- or α1.6-mannosidases (New England Biolabs, 6–8 U), microbial α 1,2-specific fucosidase (E-FUCM from Megazyme, 3 mU) and α-L-fucosidase from bovine kidney (Sigma-Aldrich, 10 mU). Specificities of these glycosidases have been previously described by us or others [19-25]; as discussed below, release of some α -mannose and β -galactose residues is limited by mutual steric hindrance. For removal of $\alpha 1,2/3$ -linked fucose or methylfucose, glycan samples were dried in a Speed-Vac and then incubated with 3 µl of 48% (w/v) hydrofluoric acid (HF) on ice for 24 h, before evaporation in a SpeedVac. Chemically or enzymatically treated glycans were generally reanalysed, unless otherwise stated, by MALDI-TOF MS and MS/ MS without further purification.

3. Results

3.1. Overall glycome of a N-acetylglucosaminyltransferase I null mutant

Previously, the N-glycome of the C. elegans gly-12;gly-13;gly-14 triple GlcNAc-TI knock-out strain was profiled by mass spectrometry, but only compositions of the hydrazine-released structures were described [13]; since then, it has become obvious that nematode glycomes are not as simple as was thought. In order to resolve specific structural details, glycans were released serially with PNGase F and PNGase A; such a procedure is necessary as only use of the latter enzyme, and not the former, can yield core $\alpha 1,3$ -fucosylated structures. The pools were separately labelled with 2-aminopyridine as a fluorescent tag, screened by MALDI-TOF-MS and then subject to 2D-HPLC using NP-HPLC followed by RP-HPLC of selected fractions; alternatively, in another experiment, only PNGase A and a single round of RP-HPLC was employed (see Fig. 1 as well as Supplementary Figs. 1-3). The major N-glycan in the glycome was Hex₅HexNAc₂ as defined by its mass (m/z 1313 or 1335 as either $[M + H]^+$ or $[M + Na]^+$) as opposed to Hex₃HexNAc₂Fuc₀₋₁ in the wild-type [26]. The expectation that the major glycan would be Man₅GlcNAc₂ when GlcNAc-TI activity is

Download English Version:

https://daneshyari.com/en/article/8300678

Download Persian Version:

https://daneshyari.com/article/8300678

<u>Daneshyari.com</u>