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a b s t r a c t

Flow stress during hot deformation depends mainly on the strain, strain rate and temperature, and shows
a complex nonlinear relationship with them. A number of semi empirical models were reported by others
to predict the flow stress during deformation. In this work, an artificial neural network is used for the
estimation of flow stress of austenitic stainless steel 316 particularly in dynamic strain aging regime that
occurs at certain strain rates and certain temperatures and varies flow stress behavior of metal being
deformed. Based on the input variables strain, strain rate and temperature, this work attempts to develop
a back propagation neural network model to predict the flow stress as output. In the first stage, the
appearance and terminal of dynamic strain aging are determined with the aid of tensile testing at various
temperatures and strain rates and subsequently for the serrated flow domain an artificial neural network
is constructed. The whole experimental data is randomly divided in two parts: 90% data as training data
and 10% data as testing data. The artificial neural network is successfully trained based on the training
data and employed to predict the flow stress values for the testing data, which were compared with
the experimental values. It was found that the maximum percentage error between predicted and exper-
imental data is less than 8.67% and the correlation coefficient between them is 0.9955, which shows that
predicted flow stress by artificial neural network is in good agreement with experimental results. The
comparison between the two sets of results indicates the reliability of the predictions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Austenitic stainless steel 316 has been increasingly and exten-
sively applied in the field of nuclear applications because of its
excellent corrosion resistance in seawater environment due to hav-
ing addition of molybdenum which prevents chloride corrosion.
This steel is very useful in nuclear applications – particularly for
cladding of fuel rods in the nuclear reactors. At elevated tempera-
tures for specific strain rates under tensile load, the phenomenon
of Dynamic Strain Aging (DSA) has been observed in this material.
DSA is characterized by serrated stress–strain curve, i.e., wavy pat-
tern like saw teeth on stress–strain curve. This is also called as
Portevin-Le Chatelier (PLC) effect. This is due to the diffusion of sol-
ute atoms into mobile dislocations which temporarily get arrested
at obstacles. The solute atoms are able to diffuse at a rate faster
than the speed of the dislocations to catch and lock them. There-
fore, due to the locked dislocations the load increases and when
the dislocations are annihilated from the solute atoms, there is a

sudden load drop. This process occurs many times, which causes
serration in the stress–strain curve. Thus, DSA is manifested by a
negative strain rate sensitivity, which results in unstable, jerky
flow. DSA occurs for certain range of temperatures and strain-rates.
A critical strain rate is required for serrated yielding to take place
in a particular temperature range. This temperature range is called
blue brittle region because metal heated to this temperature region
shows a decrease in ductility and notch impact resistance. A widely
accepted consequence of DSA is the negative strain rate sensitivity
that is observed for many alloys.

Several researchers have studied the behavior of austenitic
stainless steel under tension test to investigate the effect of tem-
perature and strain rate on its mechanical properties [1–4]. Kaiping
et al. [1] studied the serrated flow behavior of austenitic stainless
steels in the different ranges of 523–673 K and 723–873 K at the
strain rates of 5 � 10�4 s�1. For these temperature–strain-rate
combinations, a slow decrease in ultimate tensile strength and
the negative strain rate sensitivity have been observed, which indi-
cates the presence of DSA phenomenon in the material. The DSA
pre-treatment can effectively improve the creep strength and the
short-time tensile strength at high temperatures. Samuel et al.
[2] observed increase in the ductile fracture resistance of titanium
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modified stainless steel due to DSA. The strengthening effect of
DSA pre-treatment is much better than traditional cold-working
pre-treatment. In a large number of metals and alloys, the DSA
phenomenon alters the flow stress behavior of the metal and even
it may cause the formation of flow-localized regions during defor-
mation due to the negative strain rate sensitivity [5,6].

The flow stress during the hot deformation is influenced by
many factors such as strain, strain rate and temperature etc. Due
to the complex interconnections among these parameters and
materials properties, mathematical models are sometimes very
complex to handle by the numerical techniques as well as by
experimental methods, especially when it involves some particular
material phenomenon such as DSA. Considerable amount of work
were done in past few decades to correlate the flow stress with
the process parameters through the constitutive and the empirical
models [7–16]. Cabrera et al. [7] determined the constitutive equa-
tions for the flow behavior of commercial Ti micro-alloyed steel.
They conducted uniaxial hot compression tests over a wide range
of strain rates (10�4–10 s�1) and temperatures (1123–1423 K)
and showed the inadequacy of the classical constitutive equations
in taking the grain size into account. Chakravarty et al. [8] studied

the characteristics of hot deformation of b-quenched Zr–2.5Nb–
0.5Cu in the temperature range 650–1050 �C and in the strain rate
range 0.001–100 s�1 using hot compression testing with the ap-
proach of processing maps and their interpretation through the
Dynamic Materials Model. Cingara et al. [9] developed the consti-
tutive equation relating peak stress, strain rate and temperature
for hot working of 301, 304 and 317 steels using sinh equations.
Laasraoui and Jonas [10] formulated the constitutive equations
pertaining to idealized isothermal conditions for flow behavior of
steels during deformation in the roll gap. Maheshwari et al. [11]
used a modified Johnson–Cook (JC) material model to develop con-
stitutive equations for hot deformation behavior of Al-2024 alloy.
This empirical method depends on regression analysis to find the
constants. The quantitative assessment of these models yields a
wide range of errors which can go up to about 60% for a range of
strain rates from (0.0001–100 s�1). Many of the mechanisms of
regression analysis do not describe the complex relationships of
the various factors of flow stress with sufficient accuracy, because
the effecting factors (strain, strain rate and temperature) of flow
stress presents highly complicated non-linear interaction relation-
ships during hot deformation. It is difficult to deal with the dis-
persed data through the regression method and also when a new
experimental data is added, the regression constants need to be
recalculated and moreover the regression method consumes a sig-
nificantly longer time during computation. The research conducted
by Guo and Sha [12], Malinov et al. [13] and Sun et al. [14] have
mentioned the drawbacks concerning the development of consti-
tutive relationship using conventional methods.

Recently artificial neural networks (ANN) have been applied for
describing the hot deformation processes. The neural networks are
a relatively new artificial intelligence technique that emulates the
behavior of biological neural systems in digital software or hard-
ware and this approach need not to have a well-defined process
for algorithmically converting an input to an output. A significant
advantage of the ANN approach is that one does not need to have
a well-defined process for algorithmically converting an input to
an output. Rather, it needs only a collection of representative
examples of the desired mapping. The ANN then adapts itself to
reproduce the desired output when presented with training sam-
ple input. Owing to their inherently high parallelism, ANN is ide-
ally suited for the problem of estimating the flow stress from the
available experimental data. ANN is the novel way to study the
high temperature deformation behavior and some efforts have
been made to the applications of ANN in some alloys. This model
has good generalization performance without needing explicit
mathematical and physical knowledge of deformation mechanism.
The understanding of flow stress behavior in DSA regime becomes
easier by using ANN modeling compared to modeling by constitu-
tive equations.

Li et al. [15] established the predicting model for the calculation
of flow stress of Ti-15–3 alloy based on the ANN method. Reddy

Table 1
Chemical composition of austenitic stainless steel 316 (wt.%).

Element Fe Cr Ni Mo Mn Si Co Cu

Composition (%) 67.690 16.630 10.850 2.420 1.280 0.380 0.210 0.210

Fig. 1. A computer controlled UTM with a high temperature chamber.

Table 2
Temperatures and strain rates in DSA region of austenitic stainless steel 316.

Temperatures (�C) 350 400 450 500 550 600 650

Strain rates (s�1) 10�4 10�4 10�4 10�4 10�4 10�4 10�4

10�3 10�3 10�3 10�3 10�3 10�3

10�2 10�2 10�2 10�2 10�2 10�2
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