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Background: Identification of clusters in 2-dimensional scatterplots generated by hematology analyzer is a classi-
cal challenge. Conventional clustering algorithms fail to process cases with complicatedmixtures of overlapping
clusters and noise.
Method: A newmethod was developed that features an image processing algorithm for rational identification of
initial clusters and a self-partition clustering (SPC) algorithm with iterative truncation-correction (ITC) method
to handle overlapping and noise. All clusters are assumed to follow bivariate Gaussian distributions with speci-
fied means, SDs, and correlation coefficient. While, each data point is assumed to belong to all clusters but
with different proportions according to the likelihood of belonging to each cluster (computedby theMahalanobis
distance) and the data size of the cluster. Bivariate cluster statistics are computed in consideration of a weight
factor determined cluster by cluster by each data point. In the computation, the ITCmethodminimizes the effect
of overlapping and data.
Results: Performance of SPC/ITC method was evaluated by its application to differential leukocyte counting. It
showed comparable performance with manual counting and much better performance than the commonly
used expectation maximum algorithm.
Conclusion: The SPC/ITC method showed superior performance in situations with overlapping and low-density
clusters such as leukopenia or leukocytosis.
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1. Introduction

Identification of clusters in the multidimensional space is a classical
problem in many fields of scientific research. Various statistical algo-
rithms have been developed, but 2 basic algorithms commonly used
are the K-means [1,2] and expectation maximum (EM) algorithms [3].

K-means clustering first assumes the number of possible clusters, k,
and assigns initial centers for the k clusters randomly. Then, each of all
data points in the multi-dimensional space is partitioned into one of
the k clusters based on the closest distance to the centers. This approach
has well known problems of (1) dependence on how the initial cluster
centers are estimated and (2) difficulty in properly separating out mu-
tually overlapping clusters. The EM algorithm was developed to over-
come these problems. It assumes that the dataset consists of k clusters
each following a multi-dimensional Gaussian distribution. The initial
clusters are estimated by a trial-and-error procedure, but once the ap-
propriate clusters are found, the EM algorithm is not affected by the
overlapping between clusters. However, the following problems re-
main: (1) a large imbalance in data size between overlapping clusters
still affects the result, (2) the method is too sensitive to identifying a
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Abbreviations: 2D, 2-dimensional; a, number of rows and columns in the tracer
matrix; Bas, basophils; c, column sequence number (c = 1,2, …, p); CE, confidence
ellipse; D[r, c], density matrix for 2D dataset (r, c = 1,2,…, p); EM, expectation
maximum algorithm; Eos, eosinophils; F[u, v], filter matrix (kernel) to generate a RDma-
trix from D matrix; g, cluster sequence number (g = 1, 2,…,k); i, data sequence number
(i = 1, 2,…, n); IP, image processing for identifying initial clusters; ITC, iterative
truncation-correction method; L[g]i, likelihood of the i-th data belonging to the g-th clus-
ter; Lym, lymphocytes; MD[g]i, Mahalanobis distance of the i-th data to the g-th cluster;
Mon, monocytes; Mx[g], mean of variable x for the g-th cluster; My[g], mean of variable
y for the g-th cluster; n, data size of all points in the scatterplot; N[g], data size of the g-th
cluster; Neu, neutrophils; p, number of rows and columns in D or RD matrix; P[g]i, proba-
bility of the i-th data belonging to the g-th cluster; r, row sequence number, correlation
coefficient; RD[r,c], relative density matrix for the 2D dataset; SDx[g], SD of variable x for
the g-th cluster; SDy[g], SD of variable y for the g-th cluster; SPC, self-partition clustering;
SPC/ITC, the new clustering method by use of SPC and ITC method; sumLL[g], sum of log-
likelihood for the g-th cluster; u, row sequence number relative to the filter matrix; v,
column sequence number relative to the filter matrix; w[g]i, weight of the i-th data point
belonging to the g-th cluster; xi, variable x of the i-th data (i = 1,2,…,n); yi, variable y of
the i-th data (i = 1,2,…,n); zx[g]i, variable x of the i-th data standardized for the g-th
cluster; zy[g]i, variable y of the i-th data standardized for the g-th cluster.
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set of scattered or outlying points, with resultant appearance of a large
spread-out cluster [4], and (3) its optimization step often takes a large
amount of time [5].

In thefield of laboratorymedicine, themost familiar situation that re-
quires such clustering techniques is the differential counting of leuko-
cytes or white blood cells (WBCs) [6]. Although there might have been
many attempts to use the classical approaches, no reports on such use
exist. This appears to be due to the difficulty in ensuring successful clas-
sificationwith the existence of a vast variety of pathological patterns. For
example, dense overlapping of clusters occurs when there is a large in-
crease in WBCs in the presence of bacteremia or leukemia, whereas
sparsely scattered clusters are seen when WBCs are reduced to a very
low level, and bizarre uncommon clusters emerge in hematological
malignancy. Therefore, the clustering algorithm has to cope with those
situations by: (1) rational identification of the initial location of the
clusters, (2) separation of densely overlapping clusters even with
unbalanced data sizes, (3) identification of clusters with sparse, widely
spread-out clusters, and (4) ignorance of noise/debris points. Manufac-
turers of hematology analyzers appear to have developed a variety of
algorithms that use available information to handle the multitude of
situations but which have not been disclosed openly.

We had an opportunity to develop a new clustering algorithm to the
feasibility of upgrading the software currently in use in a hematology
analyzer, the Horiba Pentra MS CRP [7], so that it can cope with the
above situations, which are often processed as difficult cases with a
warning from the analyzer requesting the special attention of a hema-
tologist. This new clustering method consists of a series of algorithms
to handle various situations. Although the newmethod can be general-
ized into multi-dimensional cases, in this study, we limited its applica-
tion to the 2-dimensional (2D) case only.

First, to ensure rational estimation of initial clusters, we devised an
image processing (IP) algorithm that features mapping of the relative
density of the scatterplot and empirical scanning of density peaks to
ensure identification of clusters, even those with low density.

Second, to solve the problem of overlapping of clusters especially of
unbalanced data size, a new self-partitioning clustering (SPC) algorithm
was developed. In the conventional clustering algorithm, the member-
ship of data points is determined on the side of clusters according to
their closeness. Conversely, in the SPC algorithm, each data point calcu-
lates its proportions of membership to each of k clusters based on its
closeness (likelihood) to cluster g (g = 1,2, …, k) L[g], which is deter-
mined by a measure of distance (such as the Mahalanobis distance)
and the data sizeN[g] of the cluster. By use of an iterative process, bivar-
iate statistics (means, SD, and correlation coefficient) of each cluster are
updated based on the proportional weight w[g] provided by each data
point to cluster g, w[g] ¼ ðL½g� �N½g�Þ=ð∑k

j¼1 L½ j� �N½ j�Þ.
Third, an iterative truncation-correction (ITC) algorithm [8] was

applied to minimize the influence of adjacent clusters or noise in the
surroundings. It features truncation of data points outside a confidence
ellipse at a certain level (e.g. 80%) of each cluster, followed by correction
of the shortened SDs bymultiplication with a correction factor (1.29 for
truncation at 80%). The performance of the ITC algorithm is well docu-
mented for the 1-parameter case [9], but we extended the algorithm
to the bivariate case in this study.

The performance of the new clustering method was evaluated in
comparison with the conventional EM algorithm by randomly generat-
ing clusters with variable density and dispersion. Its clinical utility was
then evaluated by applying the algorithm to the dataset obtained from
the hematology analyzer for differential counting of leukocytes.

2. Methods

2.1. Algorithm for robust non-hierarchical clustering

Assuming the scatterplot consists of n data points designated as (xi,
yi) [i = 1, 2, …, n], the 2D scatterplot is partitioned into p segments

(p = 30 used as a default) horizontally and vertically to form a p × p
density matrix, and the number of points (density) in each cell is re-
corded as D[r, c] (r, c = 1,2,…, p), where r and c respectively represent
a location of row and column within the matrix.

2.1.1. Estimation of initial clusters based on the image processing algorithm

2.1.1.1. Computation of a relative density matrix. To identify a clusterwith
small density, we first applied the following 7 × 7 filter matrix F (a filter
kernel) to the density matrix D. As shown in Fig. 1, the filter matrix was
designed to map relative local density using the density matrix. The
filter matrix is moved from left to right, and from top to bottom to
scan relative density matrix RD[r, c] (r, c = 1,2,…, p).

RD r; c½ � ¼ ∑3
u¼�3 ∑

3
v¼�3 D r� u; c� v½ � � F rþ 3; cþ 3½ �

∑3
u¼�3 ∑

3
v¼�3 D r� u; c� v½ �

;

where u and v point to a location in row and column relative to the filter
matrix.

2.1.1.2. An image scan algorithm for appropriate identification of initial
clusters. To identify the initial set of clusters in the relative density ma-
trix RD, a small tracer matrix consisting of a × a cells (a= 4 or 5) is ap-
plied to the RD to scan for the location of the highest relative density.
Once found, the tracermatrix is expanded 1 by 1 in the vertical direction
either upward or downward until the relative density within the tracer
matrix does not decrease to less than 80% of the density for the original
a × a area. Then, the tracer matrix is expanded 1 by 1 to the horizontal
direction either leftward or rightward until the relative density does
not decrease to the same level. After completion of expansion in both di-
rections, then the second largest spot of density is scanned using the
original a × a tracer matrix. In the search, the area already occupied by
the cluster identified in the previous scan is not allowed to be included.
This process of detecting the clusterwithmaximumdensitywill be con-
tinued for the area which remained in the previous scan. The minimum
density to be identified as detecting an independent cluster was set to
3% of the maximum value of the density matrix.

2.1.2. The self-partition clustering algorithm
Based on the initial clusters identified from the above image process-

ing step, the statistics (center and spread) for each cluster are comput-
ed. For that purpose, in this study, we assumed that data points in each
cluster followed a bivariate Gaussian distribution and thus the distance
of a given data point to the cluster is expressed as the Mahalanobis dis-
tance [10].

The initial estimate of bivariate statistics (means, SDs, and correla-
tion coefficient) for each cluster (designated as Mx, My, SDx, SDy, and
r, respectively) is computed from the data limited to those enclosed
by the scan matrix.

By expressing the number of data points belonging to cluster g as
N[g] [g = 1,2,…, k], the probability P[g]i of each data point (xi, yi)
[i = 1, 2,., n] belonging to the cluster g is then computed based on
Mahalanobis distance D[g]i to the cluster g as follows:

MD g½ �i ¼
zx g½ �2i þ zy g½ �2i � 2� r g½ � � zx g½ �i � zy g½ �i

1� r g½ �2

wherezx½g�i ¼ xi–Mx½g�
SDx½g� ;zy½g�i ¼ yi–My½g�

SDy½g� ;MD[g]i corresponds to the χ2 sta-

tistic of 2 degrees of freedom, and thus P[g]i can be obtained as the prob-
ability of the upper tail of the χ2 distribution. Therefore, the relative
weight of the ith point belonging to the gth cluster w[g]i is computed as

w g½ �i ¼
P g½ �i �N g½ �

∑k
j¼1 P j½ �i � N j½ �

:
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