ARTICLE IN PR

Clinica Chimica Acta xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Clinica Chimica Acta

journal homepage: www.elsevier.com/locate/clinchim

Invited critical review 1

Clinical laboratory data: acquire, analyze, communicate, liberate 2

Hassan M.E. Azzazy^{a,*}, Ali H.A. Elbehery^b 04

^a Novel Diagnostics and Therapeutics, Yousef Jameel Science & Technology Research Centre, Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, 05 New Cairo, Egypt

^b Graduate Biotechnology Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt

ARTICLE INFO 7

6

19 20

32 33

3 3

49

ABSTRACT

Article history:
Received 23 February 2014
Received in revised form 13 August 2014
Accepted 19 August 2014
Available online xxxx
Keywords:
Smartphones
Immunoassays
Microscopy
Data processing
Point-of-care testing

Smartphone applications

Lab-on-chip

The availability of portable healthcare devices, which can acquire and transmit medical data to remote experts 21 would dramatically affect healthcare in areas with poor infrastructure. Smartphones, which feature touchscreen 22 computer capabilities and sophisticated cameras, have become widely available with over billion units shipped in 23 2013. In the clinical laboratory, smartphones have recently brought the capabilities of key instruments such as 24 spectrophotometers, fluorescence analyzers and microscopes into the palm of the hand. Several research groups 25 have developed sensitive and low-cost smartphone-based diagnostic assay prototypes for testing cholesterol, 26 albumin, vitamin D, tumor markers, and the detection of infectious agents. This review covers the use of 27 smartphones to acquire, analyze, communicate, and liberate clinical laboratory data. Smartphones promise to 28 dramatically improve the quality and quantity of healthcare offered in resource-limited areas. 29

© 2014 Elsevier B.V. All rights reserved.

3

9	Conter	nts	
<u> </u>			
7	1.	Introduction	
8	2.	Data generation	0
9		2.1. Smartphones as spectrophotometers	0
0		2.1.1. Immunoassays	0
1		2.1.2. Other colorimetric and fluorometric reactions	0
2		2.2. Smartphone-based microscopy and flow cytometry	0
3		2.3. Smartphone sensors	0
4	3.	Data liberation	0
5	4.	Data processing and interpretation	0
6	5.	Regulations for the use of cellphones in laboratory medicine	0
7	6.	Conclusions	0
8	Refe	erences	0

1. Introduction 50

Cellphones are becoming an integral part of everyday life. Recent 5152statistics showed that cellphone subscriptions reached about 6.8 billion, accounting for almost 96% of the world's population [1]. In 2012, 53

Corresponding author. Tel.: +20 2 2615 2559. E-mail address: hazzazy@aucegypt.edu (H.M.E. Azzazy).

http://dx.doi.org/10.1016/j.cca.2014.08.019 0009-8981/© 2014 Elsevier B.V. All rights reserved. developing countries had cellphone subscriptions of approximately 54 five billion [2]. Currently, there are more than one billion smartphone 55 users worldwide and they are expected to reach 5.6 billion by 2019, 56 representing a penetration rate of about 60% [3]. Smartphones are 57 characterized by high processing power. For example, Nexus 5, one of 58 today's fastest smartphones, is supplied with Qualcomm Snapdragon 59 ™ 800, a quad-core 2.26 GHz processor [4]. High performance com- 60 puting provided by such processors allows smartphones to operate 61 several sophisticated software applications. In addition, most 62 2

ARTICLE IN PRESS

H.M.E. Azzazy, A.H.A. Elbehery / Clinica Chimica Acta xxx (2014) xxx-xxx

63 smartphones as well as many conventional cellphones are equipped 64 with high resolution cameras e.g. Nokia Lumia 1020 has a 41 mega-65 pixel (MP) camera [5]. These features along with many others qualify 66 smartphones for several applications that are not restricted to 67 telecommunications.

Cellphones have been used in plenty of health-related applications. 68 Technologies used to enhance healthcare include text messages 69 70(SMS) [6,7], cameras [8], cellphone applications [9,10], sensors [11] and internet accessibility [12]. These technologies have been used 71for health education, bringing awareness for better disease manage-72ment, sending patient-related records and documented photos for 73current disease state and providing the appropriate physician feed-74 back [13]. 75

Laboratory medicine has encountered significant advances in the last few years [14]. Yet, the need for simple, inexpensive diagnostic solutions is still warranted. The application of smartphones in laborato-78 ry medicine aims to establish diagnostic facilities that can be easily used 79 in rural and resource-limited settings. Typically, this will facilitate 80 prompt diagnosis of diseases and allow timely treatment. There are a 81 few reviews, which discussed the use of cellphones in medical diagno- 82 sis. For example, Gurol-Urganci and colleagues [15] reviewed the use 83 of cellphone messaging for exchanging results of medical investigations, 84 while Moore [16] discussed the use of cellphone-connected biologi- 85 cal sensors in monitoring blood glucose level. Another review [17] 86 identified and evaluated available smartphone applications for the 87 use in radiology. This paper reviews studies, which utilized 88 smartphones and smartphone-based technologies in different as- 89 pects of laboratory medicine and disease diagnosis. These include 90 the use of smartphones in data generation, liberation, processing, 91 and interpretation (Table 1). 07

t1.1 Table 1

t1.2 Studies exploiting cellphones for laboratory associated data generation.

t1.3	Device	Technology	Use	Comments	Reference
Q3	Sony Ericsson i790	 3.2 MP camera Cellphone application 	- ELISA detection of HE4 for ovarian cancer diagnosis	Sensitivity 89.5%Specificity 90%	[19]
t1.5	 iPhone 4G 	– 5 MP camera	- ELISA detection of PSA for diagnosis of prostate cancer	 Detection limit 3.2 ng/mL 	[20]
t1.6	 Sony Ericsson i790 	- 3.2 MP camera			
t1.7	 Blackberry Bold 	 – 5 MP camera 			
t1.8	9650 smartphone				
t1.9	Sony-Ericsson U10i	 8 MP camera 	 Immunologic detection of E. coli 	 Detection limit 5–10 cfu/mL 	[21]
t1.10	Aino™				
t1.11	iPhone 4G	 5 MP camera 	 Immunologic detection of TSH concentration 	 Detection limit 0.31 mIU/L 	[22]
	'Dl	 iPhone app 	 Diagnosis of hypo- and hyperthyroidism 		[24]
t1.12	iPhone	- Camera	 Immunologic detection of vitamin D 	 Accuracy better than 15 nM 	[24]
t1.13	Google Glass	 iPhone app Camera 	 Immunologic detection of HIV 	 Precision 10 nM Qualitative and quantitative 	[25]
t1.13	GOOgle Glass	- Callela	 Immunologic detection of PSA 		[25]
t1.14	iPhone	– Camera	 Detection of blood cholesterol level 	_	[27]
01.14	II HOHE	 iPhone app 	- Detection of blood endesteror lever		[27]
t1.15	Samsung Galaxy S II	– 8 MP camera	 Quantification of albumin in urine 	 Detection limit 5–10 µg/mL 	[28]
01110	buildening building b li	 Android app 	Quantine attori of an and	Detection miller of PG, mb	[20]
t1.16	Samsung Galaxy S II	– 8 MP camera	 Detection of mercury in water 	 Limit of detection ~3.5 ppb 	[29]
	0 9	 Android app 		* *	
t1.17	iPhone 2G	- 2 MP camera	 Light microscope 	 Up to 350× magnification 	[30]
			 Imaging peripheral blood smears of iron deficiency 		
			anemia and sickle cell anemia patients		
t1.18	iPhone 4S	 – 5 MP camera 	 Light microscope 	 Sensitivity ~70% for eggs 	[31]
			 Image soil associated helminthes and their eggs 	 Poor species identification 	
t1.19	Nokia N73	 3.2 MP camera 	 Bright-field and fluorescence microscope 	 Automatic counting of TB bacilli using 	[32]
			 Image peripheral blood smears of sickle cell anemia 	ImageJ	
			and malaria patients		
			 Image fluorescently labeled TB 		(0.01
t1.20	Sony-Ericsson U10i	- 8 MP camera	- Fluorescence and dark-field microscope	 Resolution up to 10 μm 	[33]
t1.21	Aino™	Comment	 Image white blood cells and G. lamblia cysts 	Destides down to 100 per see he detected	[2.4]
t1.22	Smartphone	– Camera	 Fluorescent imaging of single nanoparticles and viruses 	 Particles down to 100 nm can be detected 	[34]
t1.23	Sony-Ericsson U10i	 8 MP camera 	 Fluorescent flow cytometer 	 Correlation coefficient with counts from 	[35]
t1.24	Aino™		 Count fluorescently labeled white blood cells 	hematology analyzer 0.93	
t1.25	Samsung Galaxy S II	– 8 MP camera	 Fluorescent and bright-field blood analyzer 	 Deliver results in 10 s for each image 	[36]
		 Smartphone app 	 Count red and white blood cells 		
	1.6.5200	Collisions hottom	 Calculate hemoglobin density 	Constant in the terminal second second second	[27.20]
t1.26	LG 5200	 Cellphone battery Cellphone application 	 GlucoPack[™], glucose meter Monitor blood glucose level in diabetic patients 	 Sends results to web server with secure access for patients and their physicians 	[37,39]
t1.27	Smartphone	 Capacitive touchscreen 	 Blood test for blood clotting agents 	 Patent filed 	[40]
11.27	Siliartpilolle	sensors	- blood test for blood clotting agents	 Priority date: Dec 9, 2010 	[40]
t1.28	Windows Mobile 5	 Bluetooth connection 	 Real-time display of ECG plot 	 Pop-up alarm with diagnostic arrhythmic 	[41]
t1.20	Smartphone	 Smartphone apps 	 Classification of ECG signals 	beats	[]
01120	Smartphone	Sinai (prione apps	 ECG summary report 	Seats	
			 Diagnosis of four different arrhythmic beats 		
t1.30	Android smartphones	 Bluetooth connection 	 Real-time EEG neuroimaging 	 EEG sensor susceptible to environmental 	[42]
t1.31	and tablets	 Smartphone app 		noise	
t1.32	– iPhone 5	 iPhone or iPod audio 	 Pulse oximeter 	 Root mean square deviation <1% 	[43]
t1.33	 iPod Touch 4 	output	 Measure arterial oxygen saturation 	(ISO standard <4%)	
		 Smartphone app 	 Monitoring of infectious diseases e.g. pneumonia 		
			 During anesthesia 		
t1.34	Samsung Galaxy S II	 Built-in inertial sensors 	 Monitor motion activities of the elderly 	 Self-administrable at home 	[44]
t1.35	(GT-I9100)	 Smartphone apps 	 Fall risk detection 		

Please cite this article as: Azzazy HME, Elbehery AHA, Clinical laboratory data: acquire, analyze, communicate, liberate, Clin Chim Acta (2014), http://dx.doi.org/10.1016/j.cca.2014.08.019

Download English Version:

https://daneshyari.com/en/article/8311356

Download Persian Version:

https://daneshyari.com/article/8311356

Daneshyari.com