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Background: Usual evaluation tools for diagnostic tests such as, sensitivity/specificity and ROC analyses, are
designed for the discrimination between two diagnostic categories, using dichotomous test results. Information
theoretical quantities such as mutual information allow in depth-analysis of more complex discrimination prob-
lems, including continuous test results, but are rarely used in clinical chemistry. This paper provides a primer on
useful information theoretical concepts with a strong focus on typical diagnostic scenarios.

Methods and results: Information theoretical concepts are shortly explained. MATHEMATICA CDF documents are pro-
vided which compute entropies and mutual information as function of pretest probabilities and the distribution
of test results among the categories, and allow interactive exploration of the behavior of these quantities in com-
parison with more conventional diagnostic measures. Using data from a previously published study, the applica-
tion of information theory to practical diagnostic problems involving up to 4 x 4 -contingency tables is
demonstrated.

Conclusions: Information theoretical concepts are particularly useful for diagnostic problems requiring more than
the usual binary classification. Quantitative test results can be properly analyzed, and in contrast to popular con-
cepts such as ROC analysis, the effects of variations of pre-test probabilities of the diagnostic categories can be ex-
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plicitly taken into account.
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1. Introduction

Evaluation of diagnostic tests is an important issue in medical disci-
plines. The overwhelming part of scientific literature in this field
considers diagnostic test situations which can be conveniently repre-
sented by means of a 2 x 2 -contingency table: one dimension of such
a table is defined by two diagnostic categories (e.g., “non-diseased” ver-
sus “diseased”), and the second dimension represents the dichotomous
test result (e.g., “normal” versus “pathological”). A recent series of re-
views provide an excellent overview of relevant methods and discuss
the advantages as well as the limitations and problems of such analyses
[1-4].

Information theoretical concepts for evaluation of diagnostic tests
are not mentioned in these reviews. This is probably due to their some-
what higher complexity together with a lack of commercially available
software and, hence, rather scarce presence in medical literature. How-
ever, these concepts have, on the one hand, a sound theoretical founda-
tion [5,6] and, on the other hand, analysis of diagnostic situations with
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higher complexity than a 2 x 2 -table is straightforward within the
framework of information theory [7-11]. Moreover, information theory
makes explicit use of the pretest probabilities of the diagnostic catego-
ries investigated.

Here I intend to remind researchers of the potential of information
theory in the field of test evaluation: by providing MATHEMATICA demon-
stration objects (CDF documents) I offer tools to interactively explore
the properties of information theoretical quantities in comparison
with traditional test evaluation methods. Using MATHEMATICA notebooks
I demonstrate how information theory enables practical solutions for
the treatment of various typical diagnostic scenarios involving two or
more diagnostic categories and one or two quantitative diagnostic tests.

2. Methods
2.1. Demonstration data

For demonstration, | employ data from a previous study on the con-
centrations of neopterin, a marker for activated human and primate
mononuclear cells, in serum and CSF samples from 218 children aged
from 4 to 18 years [12]. Of these, 91 suffered from various diseases
but had neither signs of central nervous nor of peripheral inflammation
(diagnostic category 1), 43 had definite neuroborreliosis (category 2),
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51 suffered from other central nervous system infections (category 3)
and 33 had peripheral infections (category 4).

Medians and ranges of neopterin (nmol L™ ') in CSF in the four diag-
nostic categories 1 to 4 were, respectively: 3.6 (0.2-9.3), 24.0 (5.9-
45.0), 37.8 (14.4-84.1) and 6.9 (2.5-13.4); in serum: 6.3 (2.7-10.7),
7.4 (3.4-14.5),10.2 (4.9-19.1),and 21.6 (13.8-41.9). Briefly, in category
1 both serum and CSF neopterin concentrations were low. CSF
neopterin was raised in category 2 and, even stronger, in category 3.
Serum neopterin was raised only in peripheral infections (category 4).

2.2. Basics of information theoretical evaluation of diagnostic tests

Prior to performing a diagnostic test, there exists some a priori prob-
abilities for a patient to suffer from a suspected disease or not (pre-test
probabilities). There exists uncertainty about the true status of the
patient. After applying a test with known diagnostic sensitivity and
specificity, we can estimate the a posteriori probabilities (post-test
probabilities) of disease or non-disease using Bayes' theorem. The test
outcome normally should lead to reduction of the prior uncertainty. In
the terminology of information theory, the patient is regarded to be a
“sender” in the sense of being a signal source (clinical symptoms, results
of diagnostic tests, etc.), and the physician functions as a “receiver” try-
ing to decipher the signals sent by the patient. The communication
channel between sender and receiver is rarely free from disturbance,
and even after receiving a signal (such as a test result), some uncertainty
will probably remain at the site of the receiver about the sender's true
status because, in conventional terminology, the diagnostic test used
may lead with some probability to false positive or false negative deci-
sions, due to imperfect specificity and sensitivity.

The information theoretical concept of uncertainty is closely related
to probabilities: Shannon [5,6] chose a logarithmic measure to define
uncertainty, or “entropy” as it is usually called, based on the respective
probabilities of all possible events:

H=-"" P;-ld(P).

Here, H is the entropy and the P; are the probabilities with which
each of n possible, mutually exclusive, outcomes or events may occur
(note that > _ {P; = 1; the probabilities of all possible events sum
up to unity). Id (logarithmus dualis) denotes the logarithm to base 2;
this base is usually employed in information theory, and the informa-
tion theoretical quantities then carry the unity bit (short for binary
digit).

To give the simplest example, suppose we throw a coin. The two out-
comes (head and tail) for an ideal (fair) coin both have probabilities
Ppiead = Pra = %, and thus, H = -11d(1)-11d(}) = 1 bit.

However, if an unfair coin had been used with, say, Pyeqq =2 and
Pry=2% H=-2Id (% —21d % = 0.97 bit: the entropy is smaller be-
cause we know in advance that there is a slightly higher probability
for outcome “head”.

Similarly, if we had a patient for whom we estimate a pre-test prob-
ability for having a certain disease of 50%, our prior uncertainty was
1 bit. Could we apply a perfect diagnostic test to this patient, and this
test would yield a positive result (i.e., the patient with certainty suffers
from the disease), the test would have reduced our prior uncertainty of
1 bit to zero; the information gain or “mutual information” is 1 bit. As
the example with the unfair coin demonstrates, the expected informa-
tion gain through a perfect diagnostic test would decline for pre-test
probabilities of disease either smaller or larger than 50%.

Real diagnostic tests tend to be more or less imperfect; their sensitiv-
ities and specificities will be smaller than 100%. Therefore, information
theoretical treatment of real diagnostic tests is somewhat more in-
volved. Briefly, there is the input entropy H(D) depending solely on
the pre-test probabilities of the diagnostic categories. The output entro-
py H(T) depends on the probabilities of the test outcomes. If the diag-
nostic categories and the diagnostic test possessed some mutual
association, H(D) and H(T) would overlap to some degree, and the
joint entropy H(D,T) would be smaller than the sum H(D) + H(T). The
mutual information (transinformation) is defined as the extent of this
overlap:

I(D; T) = H(D) + H(T)—H(T, D).

The difference H(D)-I(D;T) is called equivocation entropy H(D|T); it
denotes the uncertainty about the disease status of the patient after
having performed the test. The difference H(T)-I(D;T) is denoted ambi-
guity entropy H(T|D); it is the uncertainty about test outcome when the
disease status is given. For practical applications, the mutual informa-
tion is the most important quantity because it measures the reduction
of uncertainty by applying the diagnostic test.

2.3. Notation of relevant quantities

In the following sections, I shall adopt the following notation (upper
part of Table 1): diagnostic categories are denoted D1, D2,..., and test
outcomes by T1, T2, .... Pre-test probabilities for diagnostic category i
are given by P(Di).

In a test evaluation experiment we obtain a contingency table
reflecting the absolute frequencies of all patients according to their clas-
sification by disease category and test result. The probabilities P(Di,Tj)
are obtained by dividing the respective cell frequency by the total num-
ber of subjects investigated.

Table 1

Relevant probabilities and entropies for 3 x 3-contingency tables (for 2 x 2-tables, omit all terms including “3").
Probabilities Test result T1 Test result T2 Test result T3 Row sums
Diagnostic category D1 P(D1,T1) = P(T1|D1) - P(D1) P(D1,T2) = P(T2|D1) - P(D1) P(D1,T3) = P(T3|D1) - P(D1) P(D1)
Diagnostic category D2 P(D2,T1) = P(T1|D2) - P(D2) P(D2,T2) = P(T2|D2) - P(D2) P(D2,T3) = P(T3|D2) - P(D2) P(D2)
Diagnostic category D3 P(D3,T1) = P(T1|D3) - P(D3) P(D3,T2) = P(T2|D3) - P(D3) P(D3, T3) = P(T3|D3) - P(D3) P(T3)
Column sums P(T1) P(T2) P(13)
Input entropy — (P(D1) - ld(P(D1)) + P(D2) - Id(P(D2)) + P(D3) - ld(P(D3)))
Output entropy — (P(T1) - [d(P(T1)) 4+ P(T2) - ld(P(T2)) + P(T3) - ld(P(T3)))

Joint entropy

P(D1,T1)-1d(P(D1,T1) + P(D1,T2) - Id(P(D1,T2) + P(D1,T3) - ld(P(D1,T3) +

—| P(D2.T1) - [d(P(D2,T1) + P(D2,T2) - [d(P(D2,T2) + P(D2,T3) - ld(P(D2, T3) +

P(D3,T1) - ld(P(D3,T1) + P(D3,T2) - Id(P(D3,T2) + P(D3,T3) - ld(P(D3, T3)

Equivocation
Ambiguity
Mutual information

Joint entropy — output entropy
Joint entropy — input entropy

Input entropy + output entropy — joint entropy = joint entropy — equivocation — ambiguity
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