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a b s t r a c t

In this paper, a size-dependent formulation is presented for Timoshenko beams made of a functionally
graded material (FGM). The formulation is developed on the basis of the modified couple stress theory.
The modified couple stress theory is a non-classic continuum theory capable to capture the small-scale
size effects in the mechanical behavior of structures. The beam properties are assumed to vary through
the thickness of the beam. The governing differential equations of motion are derived for the proposed
modified couple-stress FG Timoshenko beam. The generally valid closed-form analytic expressions are
obtained for the static response parameters. As case studies, the static and free vibration of the new
model are respectively investigated for FG cantilever and FG simply supported beams in which properties
are varying according to a power law. The results indicate that modeling beams on the basis of the couple
stress theory causes more stiffness than modeling based on the classical continuum theory, such that for
beams with small thickness, a significant difference between the results of these two theories is observed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are produced from mix-
ing of two different materials. This type of materials provides the
specific benefits of both of the constituents. They can be defined
as inhomogeneous composites which are made from a mixture of
two different materials, usually a metal and a ceramic, with a de-
sired continuous variation of properties as a function of position
along certain dimension(s). The continuously compositional varia-
tion of the constituents in FGMs along different directions is the
great benefit of FGMs, because this property offers a solution to
the problem of appearing high magnitude shear stresses that
may be induced in laminated composites, where two materials
with great differences in properties are bonded. Nowadays, struc-
tures made of FGMs have a great practical role in engineering
and industrial fields.

Some works have been performed by researchers on the static
and dynamic behavior of beams and plates made of FGMs. Asghari
et al. [1] have mentioned some instances of these works, including
Refs. [2–7]. As another instance, the thermal snapping of function-
ally graded plates has been investigated by Prakash et al. [8]. Also,
Jomehzadeh et al. [9] presented an analytical approach for the
stress analysis of functionally graded annular sector plates. More-
over, analytical modeling of thermal residual stresses in some
functionally graded material systems has been presented by Bou-
chafa et al. [10]. It is noted that these sample works are based on

the classical continuum theory, while the formulation presented
in this work is based on a non-classical continuum theory, the
modified couple stress theory, which is discussed in detail in the
following.

In recent years, the application of FG materials has broadly been
spread in micro and nano structures such as thin films in the form
of shape memory alloys [11,12], micro- and nano-electromechani-
cal systems (MEMS and NEMS) [13,14] and also atomic force
microscopes (AFMs) [15]. Beams used in MEMS, NEMS and AFMs,
have the thickness in the order of microns and sub-microns, so that
the small scale effects in their behavior is considerable. The
size-dependent static and vibration behavior in micro scales are
experimentally validated (see for example [16–19]). Considering
experimental observations, it is well-known that size-dependent
behavior is an inherent property of materials which appears for a
beam when the characteristic size such as thickness or diameter
is close to the internal material length scale parameter [20].

The classical continuum mechanics theories are not capable of
prediction and explanation of the size-dependent behaviors which
occur in micron- and sub-micron-scale structures. However, non-
classical continuum theories such as higher-order gradient theo-
ries and the couple stress theory are acceptably able to interpret
the size-dependencies.

In 1960s some researchers introduced the couple stress elastic-
ity theory [21–23]. In the constitutive equation of this theory, some
higher-order material length scale parameters appear in addition
to the two classical Lame constants. Yang et al. [24] argued that
in addition to the classical equilibrium equations of forces and
moments of forces, another equilibrium equation should be
considered for the material elements. This additional equation is
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the equilibrium of moments of couples. Then, they concluded that
this additional equilibrium equation implies the symmetry of the
couple stress tensor. Accordingly, they modified the constitutive
equations of the couple stress theory and present the new consti-
tutive equations. Utilizing the modified couple stress theory, Park
and Gao [25] analyzed the static mechanical properties of an
Euler–Bernoulli beam. Recently, Kong et al. [20] derived the gov-
erning equation, initial and boundary conditions of an Euler–Ber-
noulli beam based on the modified coupled stress theory using
the Hamilton principle. Also, Asghari et al. [1] investigated the
size-dependent behavior of FGM micro beams using the modified
couple stress theory and the Euler–Bernoulli beam model.

The Timoshenko beam is a model for the study of behaviors of
beams with less restrictive assumptions with respect to the
Euler–Bernoulli beam. The normality assumption for sections in
the Euler–Bernoulli beam model is discarded in the Timoshenko
beam model. Hence, the Timoshenko beam is capable to capture
the shear deformation in contrast to the Euler–Bernoulli beam.
Although the Timoshenko beam is a complicated model with re-
spect to the Euler–Bernoulli model, it possesses more capabilities
and studying the behavior of beams based on the Timoshenko
model gives closer results to the exact behavior. Recently in an
interesting work, the modified couple stress theory is utilized by
Ma et al. [26] in order to investigate the size-dependent behavior
of a homogeneous Timoshenko beam. This work is indeed the
generalization of the work of Ma et al. [26] to the FGM beams.

In this paper, considering both of bending and axial deforma-
tions, an FGM Timoshenko beam is proposed on the basis of the
modified couple stress theory. In addition, generally valid closed-
form analytic expressions are derived for the bending and axial
deformations and also the angle of rotation of the cross sections
in the static behavior. As a case study, response of a specific FGM
cantilever beam subjected to a concentrated force at its free end
is obtained. Further more, the natural frequency of a simply sup-
ported FGM beam is obtained and investigated in order to delin-
eate the size-dependent vibration behavior of FGM Timoshenko
beams.

2. Preliminaries

In the modified couple stress theory, the strain energy density
for a linear elastic material in infinitesimal deformation is written
as [24]

�u ¼ 1
2
ðrijeij þmijvijÞ ði; j ¼ 1;2;3Þ; ð1Þ

where for isotropic cases it is written

rij ¼ ktrðeÞdij þ 2leij; ð2Þ

eij ¼
1
2
ðruÞi þ ðruÞTi
� �

; ð3Þ

mij ¼ bvij ¼ 2l2lvij; ð4Þ

vij ¼
1
2
ðrhÞij þ rhð ÞTij
� �

; ð5Þ

in which rij, eij, mij and vij denote the components of the symmetric
part of stress tensor r, the strain tensor e, the deviatoric part of the
couple stress tensor m, and the symmetric part of the curvature
tensor v, respectively. Also, u and h are the displacement vector
and the rotation vector noting that h = curl(u)/2. The Lame constants
and the material length scale parameter are represented by k, l and
l, respectively. The parameter b is indeed a higher-order modulus
which can be regarded as the rotational modulus which represents
the resistance of the material against the gradient of the rotation of
its elements. This parameter is related to the shear modulus l and
the length scale parameter l through b = 2l2l. In order to determine

parameter l for a specific material, some typical experiments such
as micro-bend test, micro-torsion test and specially micro/nano
indentation test can be carried out (see [16,17,19,27–29]).

The coordinate system, the kinematic parameters and the load-
ing of a Timoshenko FG beam along the x-axis modeled on the ba-
sis of the modified couple stress theory are illustrated in Fig. 1. It is
assumed the properties of the sections of the beam are not under
variation along the axial coordinate x. For a Timoshenko beam,
the displacement field is assumed as follows [30]

ux ¼ uðx; tÞ þ zwðx; tÞ; uy ¼ 0; uz ¼ wðx; tÞ; ð6Þ

where ux, uy and uz represent the displacement along x, y and z axes,
respectively. Indeed, it is assumed that all cross sections remain
plane after deformation; however, they can undergo a rigid body
displacement in x–z plane and also a rotation about y-axis. Function
w(x, t) stands for the rotation angle of the beam cross-sections about
y-axis. Also, function u(x, t) denotes the axial displacement of points
of a specific line in the section parallel to y-axis. This specific line,
calling it the bending line, is the one when imposing a pure bending
(without axial force resultant) on the section, no normal stress ap-
pears on it. Indeed, z is the distance of points of a section from its
bending line. In Fig. 1, parameter f denotes the effect of axial body
force imposed on the section as force per unit axial length. In this
work it is assumed that the axial body forces in all sections have
no moment resultant about the bending line. Also, parameter x
stands for the resultant of the transverse tractions on the top and
bottom of the beam and also transverse body forces as force per
unit axial length. Parameter c represents the resultant of y-compo-
nent of the body couples imposed on the sections as couple per unit
axial length. The distance of an arbitrary point from the bottom sur-
face is represented by ~z. The distance between the bending line and
the bottom surface is shown by ~zc . Using Eqs. (3) and (6), the non-
zero components of the strain tensor can be obtained as [26]

exx ¼
@u
@x
þ z

@w
@x

; exz ¼
1
2

wþ @w
@x

� �
: ð7Þ

Also, from h = curl(u)/2, it can be written [26]

Fig. 1. Configuration, loading and coordinate system.
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