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a b s t r a c t

In this paper, a notch analysis model is presented for the numerical prediction of multiaxial strains of a
notched 1070 steel specimen under combined axial and torsion loadings. The proposed model is based on
the notion of a structural yield surface and uses a small-strain cyclic plasticity model to describe stress–
strain relations. A notch load–strain curve is calculated with Neuber’s rule and incremental nonlinear
finite element analysis. The presented model is applied to simulate the notch root deformations of a cir-
cumferentially notched specimen under cyclic tension–compression–torsion loading histories. The model
predictions are evaluated with strain measurements at the notch root of the specimen in a comprehen-
sive set of cyclic tests. The computed strain loops were in accord with experimental data and matched
qualitatively with measured shear–axial strain histories irrespective of loading path of the test. In propor-
tional balanced torsion-axial loading, the nonlinear shear strain–axial strain loops were calculated prop-
erly. The modeling errors were determined to be a function of the loading path shape, and compared to
shear strains, axial strain predictions were more accurate.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The constantly reducing lead-times and development expenses
in automotive and related industries put more rigorous restrictions
on the design development and verification practices of automo-
tive components. Developing a fatigue-safe component design is
probably the one of the most critical ingredients of manufacture
of durable products. Therefore, engineers have devised both exper-
imental and analytical methods to estimate the useful design life of
structural parts and to assess associated fatigue damage under
multiaxial fatigue loads at service conditions [1]. Since the design
features such as fillets, welds, shoulders, generally known as the
notch, are commonly the potential sides of component failures
[2]; a proper investigation of local material deformations at such
geometrical discontinuities is essential in both fatigue testing
and analytical fatigue analyses in this context.

Due to the multiaxial stress state caused by the notch con-
straint, closed-formed analytical solutions do not exit to calculate
inelastic stress–strain response at notches. The numerical model-
ing, in particular finite element (FE) analyses, provide a reliable
solution that can be applied in the variety of component geometry
[3,4], but the applicability of this approach depends on computer
modeling of the testing process. The FE analysis costs should also
be considered especially for cases where elasto-plastic notch defor-
mations necessitate incremental FE solutions for relatively long

loading histories [3]. Alternative to FE analysis, notch analysis
methods have been introduced to calculate the stress and strain
components at a single material point, usually the notch root [5].
These analytical models seek approximate stress–strain solutions
under plane stress conditions and use the elastic stresses calcu-
lated with elasticity theory as the fundamental input. The notch
stress–strain solutions by notch analysis methods are exact for
elastic material deformations, but in the case of elasto-plastic
notch deformations, additional equations besides plasticity rela-
tions are required and the calculated notch stresses and strains
are approximate under general loading conditions. Compared to
FE analyses, however, the notch analysis methods are practical in
terms of computational efficiency and operational expenses, and
consequently, engineers have devised different methods to esti-
mate the fatigue life of structural parts under dynamic loading con-
ditions [6–10].

In this study, a notch analysis model is presented for estimation
of elasto-plastic notch stress and strains under proportional and
nonproportional cyclic loading conditions. The proposed model
uses elastically calculated notch stress history as the basic model
input and effective stress/strain measures to extend the Neuber’s
rule to multiaxial stress states [11]. The small-strain cyclic plastic-
ity model developed by Chaboche [12] is employed to describe the
notch plasticity relations. The model is applied to simulate the
notch root deformations of a circumferentially notched specimen
loaded by cyclic tension–compression–torsion loading histories.
The model predictions are compared with the measured notch
strains determined with a comprehensive set of axial force-torsion
testing programs.
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2. Multiaxial notch analysis

The notch geometries studied in earlier literature were two-
dimensional leading to uniaxial stress state at the notch root, and
proportional monotonic loading conditions were considered
[2,4,5,11]. Neuber [13] studied a semi-infinitely prismatic body un-
der anti-plane shear loadings and developed an expression relating
the theoretical stress concentration factor to the elastic–plastic
stress and strain concentration factors. Molski and Glinka [14] pro-
posed a uniaxial approximation formula for a notched body under
plane stress conditions based on equivalence of strain energy den-
sity of two identical bodies made of ideally elastic and elastic–plas-
tic materials. Hoffmann [15] and Hoffmann and Seeger [16]
proposed a multiaxial extension of Neuber’s rule by replacing the
notch and nominal stress–strain quantities with respective equiv-
alent forms, and reported successful notch root stress–strain calcu-
lations for round bars with mild, sharp and sharp-deep notches.
Moftakhar [17] analyzed two materials, one ideally elastic and
the other elastic–plastic, and showed that the total strain energy
density at the notch tip of an elastic body is greater under a mono-
tonically increasing multiaxial loading. Barkey [18] introduced the
notion of structural yield surface in relating nominal stresses to the
notch strains based on a structural constitutive relation and em-
ployed a multiple-surface plasticity model using the elastically cal-
culated nominal stresses as the local loading inputs. Koettgen [19]
introduced the notion of pseudo stress–strain for the sake of sim-
plified nominal stress or strain definitions for arbitrary geometries,
and replaced the Barkey’s anisotropic structural yield surface with
the matrix of elastically-calculated scaling factors. The elastically
computed stresses are input to the structural plasticity algorithm
to compute notch strains via a notch load–strain or a pseudo
stress–notch strain curve. Computed notch strains were employed
in the cyclic plasticity model to obtain notch stresses within the
subsequent stage. Koettgen et al. [20] reported good correlations
of the notch strains for various shaft geometries when compared
with elastic–plastic FE analyses, and similar conclusions are drawn
by other researchers employing different plasticity models for the
sake of computational efficacy [21–23]. In a recent research, Ye and
his coworkers [24] derived an unified expression for the strain en-
ergy densities considering the stored and dissipated energies at the
notch root. Their notch analysis model combines Neuber’s rule and
Monski-Glinka’s energy criterion in an energy balance expression
and employs three incremental strain ratio expressions following
Moftakhar’s approach.

Based on the review of previous studies in the literature, the
cyclic plasticity modeling utilizing the structural yield surface
concept is chosen as an efficient methodology in the numerical
prediction of multiaxial notch deformations under cyclic loading
conditions. The small-strain plasticity model proposed by Chab-
oche [12] is implemented to describe notch plasticity and
stress–strain relations. The structural yield surface is defined in
the pseudo stress space by means of the von Mises yield func-
tion. The evolving anisotropy of plastic deformation is defined
by the translation of yield surface following a nonlinear kine-
matic hardening rule. The multiaxial loading is described by
the history of pseudo stress tensor at a single material point
and input to the structural plasticity model. The pseudo stresses
are nothing but a fictitious tensor quantity computed with the
theory of elasticity for a single material point [20]. Small defor-
mations are assumed and the anisotropy of yield surface is mod-
eled with a matrix of scaling constants. Considering a set of M
different external loads acting on the component, the pseudo-
stress tensor erij is the superposition of a set of M stress tensors
equal to the elastic stress tensor calculated for each external
loads acting on the component separately.

erij ¼
XM

m¼1

ðCijÞmLm ð1Þ

where (Cij)m are scaling coefficients that are equal to the elastic
stress tensor calculated for each single external load Lm with unit
magnitude. To relate the local loads to the elastic–plastic response
at a structural point, a pseudo stress–notch strain curve is em-
ployed. The pseudo stress–notch strain curve may be generated
by FE analyses or by a uniaxial approximation formula such as
Neuber’s rule [13] or equivalent strain energy density method
[14]. The application details of both methods may be found in
respective works in literature [15–17,20,22–24].

2.1. Multiaxial stress–strain analysis

A rate-independent plasticity model using nonlinear kinematic
hardening rule is employed to calculate the stress–strain history. A
brief description of the model is given below, and the detailed
mathematical formulation can be found in [12]. Small deforma-
tions and additive decomposition of total strain as elastic and plas-
tic parts are assumed. Elastic deformations follow Hooke’s law
until the yield condition is satisfied. The yield function is expressed
as:

f ¼ J2ðr� XÞ � k ð2Þ

where J2 is the second invariant of deviatoric relative stress, and k is
the yield stress in simple shear. X represents the total backstress
composed of m parts. The shape and the orientation of yield surface
in stress space are assumed not to change, and the size of yield sur-
face may be changed to account transient effects. The evaluation
equation for the increment of backstress parts is expressed as,

dXðiÞ ¼ 2
3

CðiÞdep � cðiÞXðiÞdp ð3Þ

where C(i) and c(i) are material parameters, and dp is the increment
of accumulative plastic strain. The normality hypothesis and the
consistency conditions leads to the expression of hardening modu-
lus h as the sum of hardening modulus from each backstress parts.

h ¼
Xm

i¼1

hðiÞ ð4Þ

and,

hðiÞ ¼ CðiÞ � 3
2
cðiÞXðiÞ :

r0 � X 0

k
ð5Þ

Assuming normality rule the expression of increment of plastic
strain tensor is derived by using the plastic potential function F.

F ¼ J2ðr� XÞ þ 3
4

Xm

i¼1

cðiÞ

CðiÞ
XðiÞ : XðiÞ ð6Þ

dep ¼ @F
@r : dp ¼ 1

h
@f
@r : dr

* +
@f
@r ð7Þ

dep ¼ 2
3

r0 � X0

J2ðr� XÞdp ð8Þ

The material parameters C(i) and c(i) are computed using the
cyclic stress–strain curve of the material. Depending on the strain
and stress amplitudes, Masing and non-Masing behaviors can be
simulated under cyclic balanced loading conditions. Jiang and
Sehitoglu [25] proposed a general method in the computation of
material parameters in the Armstrong–Frederich type of backstress
evaluation, and this approach is employed in this study. The com-
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