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a b s t r a c t

In the present paper, soft computing techniques are applied to optimize the powder metallurgy process-
ing of pure iron. An artificial neural network is trained to predict the stress resulting from a given trend in
strain and sintering temperature. To prepare an appropriate model, pure iron powders are compacted and
sintered at various temperatures. Subsequently, compression test is conducted at room temperature on
the bulked samples. The sintering temperatures and the corresponding stress–strain records are used as
sets of data for the training process. The performance of the network is verified by putting aside one set of
data and testing the network against it. Eventually, by using a genetic algorithm, an optimization tool is
created to predict the optimum sintering temperature for a desired stress–strain behavior. Comparison of
the predicted and experimental data confirms the accuracy of the model.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Powder metallurgy (PM) is one of the most promising methods
for fabricating the near-net shape and complex parts because of
its ability to eliminate the need for secondary operations. PM prod-
ucts offer a wide range of applications and give good dimensional
tolerance for parts with complex geometries [1,2]. Conventionally,
PM processing involves two main steps: cold compaction and sin-
tering. During sintering, the bonding between particles is mainly
formed by diffusion. Usually, PM products have an amount of poros-
ity that strongly affects the mechanical properties of the material.
The residual porosity arises from insufficient sintering temperature
or sintering time [3]. Accordingly, there is an increasing interest to
select an optimum sintering temperature to remove the porosity
content and improve the mechanical properties. Optimization of
powder processing by simulation or modeling is a challenging task
because there are a large number of physical parameters to con-
sider. In this context, utilization of soft computing appears to be
an interesting practice, which is the aim of the present paper.

In recent years, soft computing methods have attracted
researchers because of their ability to model and analyze complex
problems that were previously difficult or impossible to solve.
Neuro-fuzzy modeling, together with a new driving force from sto-
chastic, gradient-free optimization techniques such as genetic
algorithm, forms the constituents of the so-called soft computing
[4]. Three well-known components of soft computing methods

are artificial neural network, fuzzy logic and evolutionary comput-
ing. Artificial neural network and fuzzy logic have interested mate-
rials research community [5] to overcome such challenges as
prediction of wear of materials [6,7], mechanical properties [8,9],
corrosion behavior [10] welding parameters [11] and formability
[12], among many other areas. Genetic algorithms have been used
to solve optimization and design problems such as materials selec-
tion [13], forming [14] and casting [15]. There have also been some
attempts to model the powder metallurgy via soft computing
[16,17]; however, the effect of sintering temperature on mechani-
cal properties has not been precisely modeled by such intelligent
approaches.

This paper is an effort to predict the effect of sintering tempera-
ture on the mechanical properties of PM parts using an artificial
neural network approach. The model predicts stress corresponding
to a given trend in strain and sintering temperature. The result of
the model gives the corresponding stress–strain curve, which pro-
vides the mechanical properties of the material. In addition, an at-
tempt is made to apply a genetic algorithm for optimization and
prediction of the sintering temperature for a desired stress–strain
curve.

2. Materials and methods

The material used in this study was pure iron powder with the
chemical composition summarized in Table 1. For compaction of
powders, a cylindrical container with a central channel was de-
signed and constructed. Dimensions of the channel were 20 mm
in height and 10 in diameter. Compacted samples were obtained
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by pouring powders into the die and cold pressing under the pres-
sure of 1.2 GPa. Seven samples were compacted under the same
conditions. For comparison, one of them was employed to be in
compacted condition. The others were encapsulated into a quartz
tube and sintered at temperatures 500, 600, 700, 800, 900 and
1000 �C for a period of one hour. The samples were sintered in a fur-
nace and cooled inside the chamber to room temperature. To obtain
the stress–strain data, compression tests were conducted at room
temperature by a hydraulic press with the capacity of 20 tons. To
investigate the level of porosity, scanning electron micrographs
were taken on sections perpendicular to the pressing direction.

3. Neural network and genetic algorithm

Neural networks are composed of simple elements operating in
parallel (neurons). These elements are inspired by biological ner-
vous systems. As in the nature, the network function is determined
largely by the connections between the elements. One can train a
neural network to perform a particular function by adjusting the
values of the connections (weights) between elements. Typically,
neural networks are adjusted or trained, so that a particular input
leads to a specific target (supervised training). The network is ad-
justed, based on a comparison between the output and the target,
until the network output approximates the target. Commonly,
many input/target pairs are needed to train a network. Other net-
works can be obtained from unsupervised training techniques or
from direct design methods. In unsupervised learning, the weights
and biases are modified in response to network inputs only. There
are no target outputs available. Most of these algorithms perform
clustering operations. They categorize the input patterns into a fi-
nite number of classes [18].

The multi-layer feed-forward back-propagation neural network
is the most well known and widely used network in engineering
applications. It can easily be implemented and trained faster than
other types of networks. It can efficiently solve many types of
problems correctly. This network operates in two steps. First, the
data are fed into the input layer and processed by transfer func-
tions through the layers until the network’s response is computed
at the output layer. Second, the network’s response is compared to
the target and an error is generated. Based on this error signal, con-
nection weights between layer neurons are updated until the
network reaches a pre-defined performance goal. The classical
back-propagation algorithm is fairly slow. Therefore, several heu-
ristic techniques were developed to accelerate the convergence
of this algorithm. The basic back-propagation algorithm adjusts
the weights in the steepest descent direction (negative of the

gradient) where the performance function (usually mean square
error) decreases more rapidly.

Genetic algorithm, from a practical point of view, is capable of
optimizing the design parameters incorporated into a specified fit-
ness function to accomplish a goal fitness quantity. The key feature
of genetic algorithms and other similar methodologies is that they
are derivative-free. In fact, the stochastic nature of the algorithm
with dynamic evaluation of the fitness function turns it into a pow-
erful systematic random search engine. This approach is an alter-
native to inefficient derivative-based methods. This extends its
ability to a wide range of applications.

4. Methodology

One goal of the paper is to construct a model, capable of predict-
ing the stress trend according to the variation in strain and sinter-
ing temperature. Artificial neural network is selected as the
primary modeling tool to carry out the task. It is supplied by the
temperature and strain data as independent variables (input argu-
ments) and the corresponding stress data as the dependent vari-
able (target argument). Feed-forward architecture with a
Levenberg–Marquardt back-propagation training algorithm is uti-
lized to develop the model. A sensitivity analysis is conducted on
the hidden layers and neurons. Results demonstrate that a network
with 15 neurons in its first hidden layer and 10 neurons in the sec-
ond hidden layer gives the smallest error. Table 2 represents vari-
ous settings in adjustment of network and training parameters.

To evaluate the performance of the artificial neural network
model, the data is separated into two divisions: The first, which
is used in the training process, includes 83% of the total data and
is equivalent to 776 data lines. The rest is put aside for validating
and blind testing the trained network. This data set consists of
162 samples. Making use of a secondary new data set in order to
validate and test the model assists in evaluating the generalization
ability of the trained network. In the present work, the whole
strain–stress behavior corresponding to the sintering temperature
of 900 �C was taken as the testing set. This makes the validity check
of the network stricter as the network is presented with a com-
pletely new trend, unseen in the training process.

Another goal of the paper is to assemble a system that can effi-
ciently estimate the optimal sintering temperature of a specified
strain–stress behavior. To achieve this goal, genetic algorithm
seems to be the most useful. A program is developed to facilitate
the procedure. It takes two input vectors, one as the intended
strain quantities and the other as the stress trends. It then searches
the space of possible solutions created by the neural model to find
the optimal temperature. The genetic optimization finds the opti-
mal temperature by minimizing the error (fitness) function. The er-
ror function is defined as the mean square error (MSE) among all
the predicted stress values and the desired values by

Error Function ¼ 1
N

XN

i¼1

ðpi � diÞ2 ð1Þ

Table 1
Chemical composition of pure iron powder used in this study.

Element Fe Mn Ni Cu S Zn Pb

wt.% Balanced 0.05 0.05 0.02 0.02 0.01 0.002

Table 2
Settings used in the development of the neural network.

FFBP: Feed-Forward Backpropagation.
TRAINLM: Levenberg–Marquardt training.
MSE: Mean square error.
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