Accepted Manuscript

Clown knifefish (Chitala ornata) oxygen uptake and its partitioning in present and future temperature environments

Dang Diem Tuong, Tran Bao Ngoc, Vo Thi Nhu Huynh, Do Thi Thanh Huong, Nguyen Thanh Phuong, Tran Ngoc Hai, Tobias Wang, Mark Bayley

PII: S1095-6433(17)30254-4

DOI: doi:10.1016/j.cbpa.2017.11.018

Reference: CBA 10288

To appear in:

Received date: 21 August 2017 Revised date: 24 November 2017 Accepted date: 28 November 2017

Please cite this article as: Dang Diem Tuong, Tran Bao Ngoc, Vo Thi Nhu Huynh, Do Thi Thanh Huong, Nguyen Thanh Phuong, Tran Ngoc Hai, Tobias Wang, Mark Bayley, Clown knifefish (Chitala ornata) oxygen uptake and its partitioning in present and future temperature environments. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Cba(2017), doi:10.1016/j.cbpa.2017.11.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Clown knifefish (*Chitala ornata*) oxygen uptake and its partitioning in present and future temperature environments

Dang Diem Tuong*, Tran Bao Ngoc*, Vo Thi Nhu Huynh*, Do Thi Thanh Huong*, Nguyen
Thanh Phuong*, Tran Ngoc Hai*, Tobias Wang†, Mark Bayley†

*Department of Aquatic Nutrition and Products Processing, College of Aquaculture and Fisheries, Can Tho University, Vietnam

†Zoophysiology Section, Department of Biosciences, Aarhus University, Denmark

Keywords: Global change, hypoxia, SDA, growth

Abstract

It has been argued that tropical ectotherms are more vulnerable to the projected temperature increases than their temperate relatives, because they already live closer to their upper temperature limit. Here we examine the effects of a temperature increase in environmental temperature to 6°C above the present day median temperature (27°C) in the freshwater air-breathing fish *Chitala ornata*, on aspects of its respiratory physiology in both normoxia and in hypoxia. We found no evidence of respiratory impairment with elevated temperature. The standard metabolic rate (SMR) and routine metabolic rate (RMR) in the two temperatures in normoxia and hypoxia increased with Q₁₀ values between 2.3 and 2.9, while the specific dynamic action (SDA) and its coefficient increased from 7.8 to 14.7 % in 27°C and 33°C, respectively. In addition, *Chitala ornata* exhibited significantly improved growth at the elevated temperature in both hypoxic and normoxic water. While projected temperature increases may negatively impact other essential aspects in this animal's environment, we see no evidence of a negative impact on this species itself.

Introduction

Fry (1971) considered temperature to be a controlling physical factor because of its pervasive effects on all levels of ecosystem function and its role as a major determinant in animal distribution. It has

Download English Version:

https://daneshyari.com/en/article/8318324

Download Persian Version:

https://daneshyari.com/article/8318324

<u>Daneshyari.com</u>