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17Recent reports indicate that field metabolic rates (FMRs) of mammals conform to a pattern of complex al-
18lometry in which the exponent in a simple, two-parameter power equation increases steadily as a depen-
19dent function of body mass. The reports were based, however, on indirect analyses performed on
20logarithmic transformations of the original data. I re-examined values for FMR and body mass for 114 spe-
21cies of mammal by the conventional approach to allometric analysis (to illustrate why the approach is un-
22reliable) and by linear and nonlinear regression on untransformed variables (to illustrate the power and
23versatility of newer analytical methods). The best of the regression models fitted directly to untransformed
24observations is a three-parameter power equation with multiplicative, lognormal, heteroscedastic error
25and an allometric exponent of 0.82. The mean function is a good fit to data in graphical display. The signif-
26icant intercept in the model may simply have gone undetected in prior analyses because conventional al-
27lometry assumes implicitly that the intercept is zero; or the intercept may be a spurious finding resulting
28from bias introduced by the haphazard sampling that underlies “exploratory” analyses like the one reported
29here. The aforementioned issues can be resolved only by gathering new data specifically intended to ad-
30dress the question of scaling of FMR with body mass in mammals. However, there is no support for the con-
31cept of complex allometry in the relationship between FMR and body size in mammals.

32 © 2016 Published by Elsevier Inc.
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44 1. Introduction

45 Field metabolic rates (FMRs) of mammals hold the key to under-
46 standing energy requirements and turnover of animals living under nat-
47 ural conditions (Nagy et al., 1999; Speakman, 2000; Nagy, 2001, 2005).
48 Although a variety of factors (like habitat and season) doubtless have
49 some influence on metabolism, most of the variation in FMR among
50 species is attributable to variation in body mass (Nagy et al., 1999;
51 Speakman, 2000; Nagy, 2005). Early summaries of the scaling of FMR
52 with body mass in mammals yielded an allometric exponent of ~0.725
53 (Nagy et al., 1999; Anderson and Jetz, 2005; Nagy, 2005), which is tan-
54 talizingly close to the theoretical value of 0.75 for the scaling of basal
55 metabolic rate (Brown and Sibly, 2012) and suggests that the same gen-
56 eral constraintsmay apply to FMR that seemingly apply to the basal rate
57 (West and Brown, 2005). More recent investigations on the scaling of
58 FMR in mammals, however, have detected a slight curvilinear pattern
59 (convex) in log-log plots (Capellini et al., 2010; Müller et al., 2012;
60 Hudson et al., 2013; Bueno and López-Urrutia, 2014), thereby pointing

61to a pattern of complex allometry (sensu Strauss, 1993)wherein the ex-
62ponent in the equation of simple allometry

y ¼ a � xb ð1Þ

6464is an increasing function of body size. Reports of complex allometry
have profound implications for the scaling of numerous ecological traits

65and times (Bueno and López-Urrutia, 2014).
66It would be premature, however, to attach undue significance to re-
67ports of complex allometry in FMR ofmammals. The prior studies relied
68on statistical procedures that have changed little since the allometric
69method was first described in detail by Julian Huxley in his monograph
70on Problems of Relative Growth (Huxley, 1932). Unfortunately, Huxley's
71method was never adequate for dealing with observations that are cur-
72vilinear on the logarithmic scale (Reeve, 1940; Reeve and Huxley, 1945;
73Richards and Kavanagh, 1945), so the appearance of complex allometry
74may be nothing more than an artifact resulting from inadequate statis-
75tical analyses. Newer and more versatile analytical procedures now are
76available, and application of these procedures to the study of mammali-
77an FMRs has the potential to yield insights that were unattainable here-
78tofore (Packard, 2015, 2016).
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79 Here I perform a conventional allometric analysis on a large dataset
80 for FMRs of mammals to illustrate the problems and limitations of the
81 traditional method. I then use linear and nonlinear regression, with dif-
82 ferent assumptions about the nature of random error, to re-examine the
83 same dataset. The regression procedure is a powerful, but underappre-
84 ciated, tool for use in allometric research because the computational al-
85 gorithm is not constrained to fitting a narrow range of power functions
86 based on logarithmic transformations. I show that the perception of
87 complex allometric variation in FMRs of mammals is due entirely to in-
88 ability of conventional approaches to fit descriptive equations with ex-
89 plicit, non-zero intercepts and that the exponent in the best regression
90 model is not a varying function of body size.

91 2. Conventional allometric analysis

92 Data for FMR and body mass of 116 species of mammal ranging in
93 size from a 7.3 g bat to a 111,400.0 g sea lionwere taken from the online
94 appendix to the article by Capellini et al. (2010), who compiled records
95 for FMRs that were estimated by the method of doubly labeled water.
96 The observations were transformed to logarithms (base 10) and
97 displayed on a bivariate graph, thereby revealing a slight convex curva-
98 ture in the data (Fig. 1A). Equations for a straight line and a quadratic
99 polynomial then were fitted to the transformations by ordinary least
100 squares to quantify the relationship between the variables. Bothmodels
101 assumed additive, normal, homoscedastic error on the logarithmic scale
102 (Packard, 2014). Normality of the distributions for residuals was
103 assessed with the Shapiro-Wilk test, and constancy of variance was
104 evaluated with the Breusch/Pagan test. Akaike's Information Criterion
105 (AIC) was used to compare the models (Burnham and Anderson,
106 2002). Generally speaking, models with ΔAICs b4–7 are plausible alter-
107 natives to the “best model” (ΔAIC= 0) whereas models with AICs N14
108 have no empirical support (Burnham et al., 2011).
109 Two potential outliers were identified in a preliminary examination
110 of the full dataset (Fig. 1A). Although neither of these outliers was par-
111 ticularly influential (as judged by Cook's Distance), they were removed
112 from the dataset before proceeding further (removing these observa-
113 tions had no substantive effect on the outcome). The model for the
114 straight line fitted to observations for the remaining 114 species ex-
115 plains N95% of the variation in log FMR (Table 1). However, the fitted
116 equation does not perform well at the upper and lower ends of the
117 size range, where observations for the response are appreciably higher
118 than expected for a rectilinear model (Fig. 1A). This departure from lin-
119 earity is confirmed by the curvature in a plot of standardized residuals
120 against fitted values (Fig. 1B). The rectilinear fit also is heteroscedastic
121 (Table 1), owing to greater variability in the response for larger species
122 (Fig. 1B). Back-transforming the deterministic equation is unlikely to
123 yield a good description for the pattern of variation in the original
124 data because thefit to logs failed to satisfy the fundamental requirement
125 for linearity (Reeve, 1940; Reeve and Huxley, 1945; Richards and
126 Kavanagh, 1945).
127 The quadratic equation explains only 1.3% more of the variation in
128 log FMR than is explained by the rectilinear fit (Table 1), but the mean
129 function for the quadratic successfully captures the curvature in the ob-
130 servations (Fig. 1A) and the model is strongly favored by AIC (Table 1).
131 Although the quadratic seemingly violates the assumption of homoge-
132 neity of variance (Table 1), the plot of standardized residuals indicates
133 that the departure from homoscedasticity is trivial and that residuals
134 are satisfactory (Fig. 1C). The quadratic model consequently is accepted
135 here as a reasonable fit to the observations.
136 Howshould the quadraticmodelfitted to logarithms be interpreted?
137 Three problemswith themodel aremajor concerns: the first problem is
138 one of general importance to the entire field of biology, namely, the use
139 of quadratic polynomials to describe biological data; the second prob-
140 lem concerns the use of quadratic equations in traditional allometry;
141 and the third problem focuses on the present dataset for FMRs of
142 mammals.

143First, statisticians have tried for years to convince biologists not to
144resort to quadratic equations (or other polynomials) to describe bivari-
145ate data of any kind (e.g., Finney, 1989; Paine et al., 2012). A quadratic
146equation traces the path of a parabola (http://www.mathopenref.com/
147quadraticexplorer.html), so a quadratic seldom (if ever) is a realistic
148representation of pattern in biological data. The fittedmodelmay follow
149the path of observations quite well over the limited range for the

Fig. 1. (A) Rectilinear and quadratic models fitted to logarithmic transformations of data
for FMR and body mass of 114 species of mammal. Stars identify possible outliers that
were identified in a preliminary examination of the data (Studentized deleted
residuals = −3.8 for Zyzomys argurus and +3.6 for Arctocephalus gazella in the fit of the
quadratic model to the full dataset). The outliers were not included in the final analysis.
(B) Standardized residuals vs. fitted values from the fit of the straight line to logarithmic
transformations. Note the bowl-shaped pattern confirming that transformation failed to
linearize the distribution. (C) Standardized residuals vs. fitted values from the fit of the
quadratic polynomial to logarithmic transformations.
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