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Data driven computational approaches to predicting protein–

ligand binding are currently achieving unprecedented levels of

accuracy on held-out test datasets. Up until now, however,

this has not led to corresponding breakthroughs in our ability

to design novel ligands for protein targets of interest. This

review summarizes the current state of the art in this field,

emphasizing the recent development of deep neural networks

for predicting protein–ligand binding. We explain the major

technical challenges that have caused difficulty with predicting

novel ligands, including the problems of sampling noise

and the challenge of using benchmark datasets that are

sufficiently unbiased that they allow the model to extrapolate to

new regimes.
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Introduction
Molecular recognition is a fundamental requirement of

biological systems. The interactions between proteins

and small molecules are central to biology, allowing cells

to sense their surroundings and respond appropriately.

Estimates place the number of small molecules that can

be synthesized at �1060, yet just a small fraction of

potential protein–ligand interactions have been explored.

Finding novel interactions is of great importance to drug

discovery and basic biology. Given the enormity of the

search space, computational approaches can narrow down

the possibilities. However, despite three decades of

computational effort, biochemical experiments are still

essential to determine the efficacy of ligand binding to a

protein target [1,2]. The results of computational anal-

ysis have been decidedly mixed: it is challenging to use

even experimentally well-characterized ligand–protein

interactions to computationally design novel interactions

[1,2], much less explore the vast space of possibilities.

There are three highly demanding tasks in protein–ligand

binding prediction: virtual screening predicts whether a

ligand binds to a given target; affinity prediction predicts

the binding affinity; and pose prediction identifies the

molecular interactions causing binding to occur. In this

review we focus on the first; the others have been

reviewed elsewhere [3,4]. Approaches to virtual screening

can be categorized as physical or statistical. The idea of

using first principles physical models to describe protein–

ligand interactions is attractive, however timescale and

computational resource constraints mean that simplified

descriptions of features such as protein flexibility, and

solvent are necessary. Docking algorithms are an impor-

tant example of a coarse-grained physical model,

however, even the most sophisticated versions cannot

accurately reproduce large numbers of known interac-

tions, much less predict new ones. The scoring functions

used in such approaches can be empirical [5–9] or knowl-

edge-based [10–14], and significant expertise is required

to encode physico-chemical interactions through the use

of hand-tuned features and parameters. Moreover, the

results can be highly specific to the system that they are

designed for [15].

Recently, the use of high throughput methods to screen

large libraries of proteins and small molecules and quan-

tify their interactions has made it possible to correlate

activity with representations of proteins and small mole-

cules, to infer predictive models. Techniques from

machine learning and artificial intelligence have been

introduced, allowing both the parameters and the model

to be learned from the wealth of experimental data

available in databases such as Chembl [16–19]. Increas-

ingly publications are demonstrating that data driven

approaches have the potential to make significant con-

tributions to these problems [20��,21�,22�,23�,24–27].

Machine learning — potential and limitations
The aim of any machine learning or statistical approach is

to identify patterns among training examples that can be

used to make predictions outside the training set. An

algorithm achieves this by mapping the training set

representation to a space in which active and inactive

ligands segregate — this mapping can be guided by phys-

ical models [13,23�] but is more often learned directly

from the data without addition of extensive physico-

chemical knowledge [21�,22�,26]. Once this mapping
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has been learned, it is hoped that the location of new

examples in this space — clustered with training set

actives or inactives — will accurately predict their activ-

ity. To compare the performance of different algorithms,

a test set of ligands with known activity is held-out during

the training process. An algorithm that can make accurate

predictions for this unseen data is presumed to extrapo-

late well.

In particular, approaches that use deep neural networks

(DNNs) have been shown to make predictions on held-

out test sets with eye-opening levels of accuracy, exceed-

ing 0.95 AUC (Area under the Receiver Operator

Characteristic) on benchmark datasets [22�,28]. However,

the extent to which such results extrapolate is not yet

clear — are they overfit to the training data [1,29,30��]? A

number of studies posit that the test/train protocol is not

as exacting as it might appear due to the non-uniformity

of the distribution of ligands in chemical space. If training

set actives are closer to test set actives than to training set

inactives, by some metric that is not fully predictive of

protein–ligand binding activity such as molecular weight,

or number of ring systems, then the algorithm can appear

to make accurate predictions for test set molecules with-

out being able to extrapolate this predictive ability

[31,19,32]. Machine learning performs best when abun-

dant data drawn uniformly from the space of interest is

available, but in this setting human chemists choose

which molecules to work with, often based on clear

similarities to known success stories [33,34].

Definitively showing that these approaches generalize is

perhaps the outstanding challenge facing this field today.

In the search for novel pharmaceuticals, the ability to

predict the binding of ligands that are chemically distinct

from those in the training data is highly valuable, but

much more challenging for algorithms that are expert at

identifying patterns among training set ligands. The goal

of this article is to review statistical approaches to molec-

ular recognition in the context of protein–ligand binding,

focusing on recent results that exploit DNNs (see Figure 1).

Here we briefly outline the basic steps of machine learning

algorithm that predicts protein–ligand binding.

Molecular representation
There are almost as many choices for representation of

the input data as there are for the machine learning

algorithm employed [35,36]. The simplest involve count-

ing the numbers of different heavy atoms present in a

ligand, together with other features such as hydrogen

bond donors/acceptors, chiral centres and ring systems

[19,30��]. Some information about the chemical structure

is retained by descriptors such as atom pairs or donor–

acceptor pairs [37,38] where each element has the form

(atom type i) — (distance in bonds) — (atom type j).
More information is encoded by chemical fingerprints,

for example MACCS keys [39] and ECFP fingerprints

[40]; fixed length binary descriptors which can be gener-

ated by the package RDKit [41]. Here, each non-hydro-

gen atom is used as a centre from which fragments are

generated by extending radially from the centre along

bonds to neighbouring atoms; the maximum radius con-

sidered N is encoded in the name as ECFP2N. A unique

identifier is assigned to each fragment, and the set of

identifiers for molecules is mapped to a fixed length bit

vector to yield the molecular fingerprint.

This abundance raises the question of which represen-

tation is most useful for different prediction tasks.

Recently the suggestion has been made that it may be

more effective to also learn the molecular representation

itself, alongside the metric and corresponding embedding

space used to distinguish active from inactive ligands

[21�,22�,27,42]. However, counter-intuitively it has also

been reported that the use of more complex molecular

descriptors can result in little gain of predictive ability

[30��,43].

Representation and sampling noise
One rational for the finding that more complex represen-

tations can result in little improvement is noise due to

finite sampling. The basic premise of any predictive

algorithm is that similarities among known interaction

partners can reveal the requirements of the binding site,

and thus predict novel interactions. A straightforward

approach is to compile the set of ligands known to bind

to a protein receptor of interest, and identify those

features that show statistically significant enrichment

among this set [44]. However, because there are only

finitely many samples (i.e. known ligand binders), some

features will be enriched purely by chance. This chance

similarity increases with the number of variables, so

representations that have more variables will lead to

greater random similarity between features. For DNNs

in particular, representations with thousands or even

millions of features have recently been employed

[24,21�,22�]; although these algorithms have the ability

to share information between targets it is still important

that the level of chance similarity between small mole-

cules is quantified and accounted for.

This phenomena has been carefully studied in the field of

random matrix theory, which provides a null distribution

that describes the similarity between samples (ligands)

that can be expected by chance due to finite sampling as a

function of the number of samples available, and the

number of variables present in the ligand descriptor

[45,46�]. A simpler method for generating this null distri-

bution involves computing the covariance matrices of

multiple sets of n random ligands, where n is the sample

size, using the same ligand descriptor for each set, to

obtain the distribution of the largest entries that occur

due to finite sampling noise. A similar approach can be

taken for any measure of molecular similarity, defining a
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