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Classical molecular dynamics (MD) simulations will be able to

reach sampling in the second timescale within five years,

producing petabytes of simulation data at current force field

accuracy. Notwithstanding this, MD will still be in the regime of

low-throughput, high-latency predictions with average

accuracy. We envisage that machine learning (ML) will be able

to solve both the accuracy and time-to-prediction problem by

learning predictive models using expensive simulation data.

The synergies between classical, quantum simulations and ML

methods, such as artificial neural networks, have the potential

to drastically reshape the way we make predictions in

computational structural biology and drug discovery.
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2 Institució Catalana de Recerca i Estudis Avanç ats (ICREA), Passeig
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Introduction
Molecular dynamics (MD) simulations are one of the

predominant techniques to study protein dynamics.

MD is often used to capture dynamical processes of

proteins across different timescales with atomistic details

in order to rationalize biological phenomena. Despite the

potential to become a surrogate model of real protein

dynamics, some important issues still remain to be solved,

mainly: high computational cost and sampling limitations

[1] and force field accuracy [2–4].

Classical MD simulations constitute a balance between

accuracy and efficiency. For example, quantum-level

phenomena such as enzymatic reactions, polarizability

and proton transfers are neglected in exchange for compu-

tational speed. Commonly used force fields, based on a

parameterization of a closed form potential, are fast to

compute, but use approximations that forfeit accuracy.

The extent to which these limitations may affect the

validity of the results depends on the system and the

biological question at hand. Quantum mechanics (QM)

calculations can be used to obtain an accurate description

of a molecule, but are computationally demanding and

very limited in terms of sampling. Ideally, one would like

to simulate at quantum level accuracy, which describes

the physics and chemistry precisely, but at the sampling

regime of current classical simulations.

The first simulation of protein dynamics dates from

1977 and consisted of a 9.2 ps trajectory of the bovine

pancreatic trypsin inhibitor (BPTI) in vacuum [5]. In 2010,

[6] reported a 1 ms trajectory of the same protein in explicit

solvent, which constitutes a 100 million increase in trajec-

tory length compared to the first simulation. In 30 years,

MD simulations have increased sampling capabilities over

8 orders of magnitude, with increasing accuracy in the force

fields [2–4]. In the last 10 years, MD has evolved from

single simulation [7–9] to high-throughput molecular

dynamics studies [10–15,16�], where hundreds of micro-

seconds of simulations are computed in independent tra-

jectories to obtain converged statistics. Software and hard-

ware innovations, such as the implementation of MD

codes for GPUs [17–20], distributed computing projects

like Folding@home [21], GPUGRID [22] and the devel-

opment of special-purpose supercomputers like ANTON

[23], are steadily decreasing the computational cost of

molecular simulations. Additionally, the development of

adaptive sampling schemes has introduced more efficient

ways to sample conformational space, decreasing the

amount of simulations needed [24–26].

In a recent review we estimated that MD would reach

seconds of aggregated sampling using commodity hard-

ware by 2022 [27] (Figure 1a), generating petabytes of

simulation data. For instance, the file size of one second of

simulation data of a 60 000-atom system (e.g. a GPCR

system) at 0.1 ns per frame is 7.2 Petabytes (reduced to a

third using compressed trajectory file formats). This

amount of data constitutes a valuable source of informa-

tion, but the knowledge extracted from it is mainly used

to rationalize a particular protein system at hand, not to

generalize it to other systems. In this review, we envision

a paradigm change in the near future where expensive

simulations (QM and MD) are not used to predict but to

learn models, so that further predictions can be drawn

using ML approaches. By doing so, the large computa-

tional cost required by simulations becomes justifiable, in

particular if the results are more accurate by the use of

more expensive simulation methods.
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Machine learning applied to structural biology
ML approaches are not new in simulation analysis. For

instance, the common analysis pipeline for MD simula-

tions involves dimensionality reduction [28–33]) and

clustering algorithms.

In the last few years, ML applications have grown expo-

nentially. One of the main factors driving this growth is

the broad popularization of a particular type of ML called

deep neural networks [34,35]. An artificial neural network

(NN) is a simple mathematical framework organized in

layers, each of them performing a matrix multiplication

and a non-linear function of the input variables x. The

output of a single neuron f in each layer is given by

f ¼ f ðwtx þ bÞ, where w are learnable weights, b is a bias

and f is some nonlinear function. NNs can have several to

hundred of nested layers and in such cases is called

“deep”. Given enough parameters, a NN is capable of

interpolating any continuous function [36,37].

The application of NN models in computational biology

is steadily increasing [38]. For instance, the Merck molec-

ular activity challenge demonstrated the potential of deep

neural network models in drug discovery [39]. DeepTox

[40] is a deep learning-based model for toxicity prediction

of compounds, winning the Tox21 toxicology prediction

challenge in 2014 by a large margin. Variational autoen-

coders [41], a generative flavor of deep NNs, were

recently applied to convert discrete representations of

molecules to and from a multidimensional continuous

representation [42], allowing for efficient search and

optimization through open-ended spaces of chemical

compounds. Additionally, autoencoders have also been

used for dimensionality reduction in MD [43–45]. VAMP-

nets [46] fit a Markov state model from the system specific

molecular simulation data. NNs have also been used to

reproduce the free-energy surface of molecules [47].

Deep convolutional neural networks (CNN) [48] have

become increasingly popular due to its performance in

machine vision, a property that has been exploited by us

and others to apply it on structural biology by treating

proteins as 3D images. CNNs have been used for ligand

binding site detection [49�], ligand pose prediction [50],

ligand active/inactive classification [51], ligand binding

affinity prediction [52�] and protein design [53]. Also, the

DeepChem software [54�] and the MoleculeNet chal-

lenge [55] provide multiple featurization algorithms and

access to relevant QSAR prediction datasets.
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Figure 1

(a) MD data generation (b) QM/ML (c) MD as data augmentation tool
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Overview of a combined simulation and machine learning approach. (a) MD data generation is expected to reach the second aggregated

timescale by 2022 and an output files size of several petabytes by 2022 based on a trend of maximum aggregated time per paper per year using

the ACEMD software. Chart adapted from [27]. Referenced publications correspond to [12,13,15,29,56–58]. (b). A first example of ML replacing

QM to predict dihedral energies given a neural network trained with QM simulations. (c). An example of data augmentation by MD: augment

protein–ligand binding poses for a set of protein–ligand pairs with unknown binding mode; augment binding affinity data for a set of resolved

protein–ligand complex structures of unknown affinities.
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