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Likelihood-based analysis of single-particle electron

microscopy images has contributed much to the recent

improvements in resolution. By treating particle orientations

and classes probabilistically, uncertainties in the

reconstruction process are explicitly accounted for, and the

risk of bias towards the initial model is diminished. As a result,

the quality and reliability of the reconstructions have greatly

improved at manageable computational cost. Likelihood-

based analysis of electron microscopy images also offers a

route to direct coordinate refinement for dynamic systems, as

an alternative to 3D density reconstruction. Here, we review

recent developments in the algorithms used for reconstructions

of high-resolution maps, and in the integrative framework of

combining likelihood methods with simulations to address

conformational variability in cryo-electron microscopy.
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Introduction
Likelihood-based methods play a central role in the

analysis of images from electron microscopy (EM) experi-

ments. Cryo-EM produces 2D projection images of indi-

vidual particles frozen at near-native conditions. 3D den-

sity maps can be reconstructed if the 2D projections can

be appropriately classified, and the coverage of orienta-

tion space is dense. However, the low signal-to-noise ratio

of EM images makes it challenging to unambiguously

determine the orientation and conformation of each indi-

vidual particle. These uncertainties are taken into

account using a likelihood function that assigns a

probability to the orientations and conformational classes

of each particle. This probabilistic approach has substan-

tially reduced the risk of bias towards the starting model.

The foundations for likelihood-based techniques in cryo-

EM were set by Sigworth in 1998 [1] with a method to

align synthetic images for 2D class averaging. The under-

lying average is iteratively computed as a weighted sum

over the possible in-plane rotations and translations of the

individual images. The likelihood function quantifies the

probability that an image arises by chance given a partic-

ular class-average. A key ingredient of any likelihood

function is a model of the errors. For cryo-EM images,

already the simplest model, white noise, helps avoid

misalignment. Sigworth’s method [1] was extended to

multiple 2D references [2], and in 2005, it was optimized

over a real cryo-EM dataset [3].

In a major step forward, likelihood formulations were then

introduced into 3D reconstruction methods. Likelihood

functions in 3D reconstruction quantify the degree of

consistency between a fixed number of 3D maps and the

particle images [4,5]. The maps are iteratively optimized to

maximize a likelihood function that has been marginalized

with respect to certain model parameters by integrating

them out [6] (see Eq. [1]). However, the convergence of

these methods is affected by the image quality. For noisy

images, the methods can get trapped in a local optimum [7],

leading to globally suboptimal reconstructions.

The recent dramatic advances in image quality have

given a major boost to likelihood-based reconstruction

methods. Direct electron detection cameras [8,9] record

low-dose/low-defocus images. A fast frame readout rate

makes it possible to correct for beam-induced motion and

radiation damage [10–12]. The superior images analyzed

with advanced algorithms, using fast likelihood-based

formulations, have made it possible to reconstruct 3D

maps at unprecedented resolution with reasonable

computational costs [13,14].

However, sharper EM signals show that for many biomo-

lecular systems the particle images do not represent a

small set of discrete states but rather a continuous ensem-

ble of conformations [15]. Reconstructing 3D maps of

flexible systems is challenging because standard methods

require a small number of conformational classes so that

there are sufficient particle orientations to cover the 3D

orientation space of each class. Extensive conformational

variability constitutes a major challenge in cryo-EM.
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The purpose of the review is twofold: first, to discuss the

advances and optimizations in the likelihood-based algo-

rithms that generate 3D reconstructions with unprece-

dented levels of speed and accuracy; and, second, to

highlight alternative methods that address the challenge

of conformational variability in the cryo-EM data by

directly refining the conformational ensemble from simu-

lations using a likelihood-based probability.

Likelihood and Bayesian analysis in cryo-EM
The likelihood function in cryo-EM reconstruction quan-

tifies the probability that an experimental particle arises

from a particular 3D model. Accuracy and computational

speed depend on how the likelihood is formulated. The

likelihood function arises from an assumption about the

distribution of noise. Standard likelihood functions are

based on Gaussian [4,5] or Poisson [16,17��] noise models.

Assuming a Gaussian likelihood is equivalent to using the

cross-correlation coefficient as a goodness-of-fit measure

between the experimental image and a 2D image calcu-

lated from the 3D model.

The accuracy of the resulting reconstructions depends on

how well the models and experimental uncertainties are

represented. Detailed descriptions account for the model

orientation, electron density projection, particle center

translations, intensity uncertainties, and blurring effects

caused by the intentional setting of the microscope out of

focus (which are described using a contrast transfer func-

tion (CTF) [18]). However, sophisticated likelihood func-

tions require the optimization of many variables (so-

called ‘nuisance parameters’), and thus entail higher

computational costs. Most [19–21,22��] 3D reconstruction

methods (Table 1) optimize only the orientations and

translations but assume a constant microscope defocus for

each individual particle. BioEM [23], an ensemble refine-

ment method, treats the CTF parameters, intensity nor-

malization and offset as additional nuisance variables.

Calculating the likelihood function in Fourier space

brings several advantages. The projection slice theorem

makes it possible to obtain a 2D projection from a 3D

Fourier-transformed model without having to rotate or

project it. In reciprocal space, the Gaussian error model

can include colored noise by giving variable weights to

different spatial frequencies. Moreover, in Fourier space

it is straightforward to separate high and low frequency

modes. This has been recently exploited in a branch-and-

bound algorithm [22��] to discard poor orientations, as

identified by using only the low frequency modes in a

reduced likelihood function. Conversely, in a real-space

treatment the costs are reduced by masking the particle

and discarding the regions of only noise from the calcula-

tion [21].

Prior knowledge about models and their parameters

reduces the uncertainties in the cryo-EM data analysis.

For white noise, likelihood maximization is equivalent to

minimizing the squared difference of calculated and

observed intensities in a least-squares fit. However, for

low signal-to-noise ratios, these calculations can lead to

erroneous particle classification [24]. Therefore, to reduce

the errors, prior probabilities often modulate the likeli-

hood function (creating a joint likelihood or Bayesian

posterior; see Figure 1 right). Possible prior functions

include Gaussian distributions of the particle centers
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Table 1

Recent likelihood-based methods for 3D reconstruction and ensemble refinement from cryo-EM particle images. We report the name and

reference of each method, the type of analysis (maximum or marginalized likelihood or Bayesian) and the reconstruction or ensemble

refinement methods employed. We specify if the method performs Fourier-based 3D density map reconstructions from particle

classification or direct model coordinate refinement

Method Likelihood-based methods Reconstructions Dynamics and/or ensemble refinement

3D density maps refinement from particle

averaging and classification

Direct model coordinate refinement

Maximum or

marginalized

likelihood

Bayesian Expectation

maximization

Stochastic

gradient

descent

Covariance or

principal

components

Monte Carlo

sampling

Hybrid/

integrative

simulations

Maximum

entropy or

minimal

ensemble

XMIPP [19] X X

RELION [20] X X

FREALIGN [21] X X

cryoSPARC [22��] X X X

sMAP-EM [16] X X X

MLV [32] X X X

Tagare et al. [34�] X X X

Joubert and

Habeck [17��]
X X

BioEM [23] X X X

EMageFit [53�] X X X X

Mosaics — EM [52�] X X X
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