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Computational structure-based protein design programs are

becoming an increasingly important tool in molecular biology.

These programs compute protein sequences that are predicted

to fold to a target structure and perform a desired function. The

success of a program’s predictions largely relies on two

components: first, the input biophysical model, and second,

the algorithm that computes the best sequence(s) and

structure(s) according to the biophysical model. Improving both

the model and the algorithm in tandem is essential to improving

the success rate of current programs, and here we review

recent developments in algorithms for protein design,

emphasizing how novel algorithms enable the use of more

accurate biophysical models. We conclude with a list of

algorithmic challenges in computational protein design that we

believe will be especially important for the design of therapeutic

proteins and protein assemblies.
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Introduction
Computational structure-based protein design is one of

the most promising tools for engineering proteins with

new functions, including the development of therapeutic

proteins and protein assemblies [1–4]. Despite important

successes, however, many of the current computational

protein design tools often have low success rates, and

designed proteins sometimes fail to achieve the function-

al properties of native proteins. New advances in protein

design methodologies are required to improve the func-

tional properties and success rate of computationally

designed proteins.

The problem of engineering a new functional protein

using computational methods is typically divided in two

challenging stages. The first stage is selecting a target
tertiary/quaternary protein fold that will be designed for a

specific function. Often the selected fold is one that

performs a similar function and can later be redesigned

to a new one [5–8,9��]. In other cases, a protein that has a

completely different function is used as a scaffold and

repurposed for a new one [10–12]. And, increasingly,

protein engineers are incorporating empirical folding

and structural principles [13–18] to design proteins from

scratch (de novo design) [12–19]. The second stage is to

design a protein sequence, together with side chain

rotamers and residue conformations [20�], that will adopt

the overall target fold (often allowing some backbone
flexibility [13–18,20�,21,22�,23�,24–26,27��]) and perform

a desired function (e.g., binding with specificity to a target

molecule). This latter stage has been historically referred

to as protein design [28]. Many computational protein

engineering protocols implement different variations of

these two stages, and these have resulted in many suc-

cessfully engineered new proteins [5–8,9��,10–19,29–35].

Here we focus on protein design.

Protein design can be formulated as a well-defined

computational problem by reducing it to an optimization

over a family of parameterized structure-based protein

redesign problems. In this well-posed version, an opti-

mization algorithm (also known as a search algorithm)

computes and outputs the best protein amino acid

sequence(s) and structure(s) in a space defined by a

biophysical input model. This biophysical model defines

the sequence and structural search space (e.g., template

input structure, the allowed flexibility, the amino acid

sequences allowed, etc.), the optimization objective (e.g.,

single state, multi-state, ensemble-based, etc.), and the

scoring potential for protein energetics (i.e., the energy

function [36,37]). To our knowledge, all structure-based

protein design programs conform to this formulation

[13,38–42]. For example, one of the most frequently used

biophysical models for backbone flexibility in Rosetta

[13] consists of a target structure, an ensemble of allowed

backbone moves (e.g., backbone dihedral changes), a

rotamer library, the energy function, and a predefined

sequence space [13,43]. This biophysical model describes

a space which is then searched using Rosetta’s iterative
relaxation/design algorithm [13]. Iterative relaxation/

design iteratively intercalates two steps: first, a design

step, where the backbone is held constant while the

conformations and amino acid identities of the side chains

are optimized; and second, a relaxation step, where the

sequence is held constant, while the backbone and side

chains are optimized using a hybrid stochastic/gradient

descent optimization [13,44,45].
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The accuracy of a computational protein design relies

largely on the biophysical model and it is thus highly

desirable to improve this model. Biophysical model

improvements, however, often come at the cost of expo-

nentially increasing the computational complexity of the

search problem. Since computational hardware cannot

grow at the same rate, the only practical solution to search

more complex biophysical models is through novel algo-

rithms. Therefore, substantial improvement in computa-

tional protein design necessitates the development of

novel algorithms (see Figure 1). For this reason, we focus

on algorithms for protein design, and review those that we

believe represent new algorithmic breakthroughs and

that have potential for the design of therapeutic proteins

and protein assemblies. We focus on developments since

2010 (foundational and earlier algorithms are discussed in

[37,46,47�]) in four areas: optimization algorithms for

protein design, algorithms to search improved flexibility

models, multi-state design, and ensemble-based design.

Because of constraints on the length of this survey, we

exclude related algorithms that are important for thera-

peutic and assembly protein design that have also been

highly productive recently, such as docking algorithms

(for a review see [48]), scaffold search algorithms (e.g.,

[49,50]), and algorithms to optimize libraries for in vitro
evolution of designed proteins (e.g., [51,52]).

Provable versus heuristic algorithms
Protein design, like many other problems in the field of

computational structural biology, belongs to a hard class

of computational problems [47�]. Consider, for example, a

simple yet common biophysical model for the protein
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Cartoon of the equicomplexity curves for computational protein design. Curves show a trade-off between biophysical model quality and protein

design size given fixed computational resources (time and space). Algorithm improvements (black arrows) expand the boundaries of these trade-

offs to allow higher quality biophysical models for larger protein design sizes. The y-axis maps the multi-dimensional input biophysical models that

can be potentially used in protein design to a one-dimensional axis. The axis is ordered from the simplest models at the bottom (with a pairwise

molecular-mechanics energy function) to the most advanced models at the top. Several examples of input biophysical models are shown: Mut: All

amino acid mutations allowed at all designed residue positions; SCR: discrete side-chain flexibility; BBR: discrete backbone flexibility; SCC:

continuous side-chain flexibility; BBC: continuous backbone flexibility; MSD: multi-state design; K*: ensemble-based free energy calculations; QM:

the most advanced energy function models. PPI: Protein–protein interaction. Example references of algorithms that improve the curves and that

are cited in this review are shown next to each arrow. *Ref [9��] corresponds to the design of a peptide inhibitor of a PPI in the x-axis.
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