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a b s t r a c t

We explored the potential for rapid land use/land cover (LULC) mapping using time-series Landsat
satellite imagery and training data (for supervised classification) automatically extracted from crowd-
sourced OpenStreetMap (OSM) “landuse” (OSM-LU) and “natural” (OSM-N) polygon datasets. The main
challenge with using these data for LULC classification was their high level of noise, as the Landsat images
all contained varying degrees of cloud cover (causes of attribute noise) and the OSM polygons contained
locational errors and class labeling errors (causes of class noise). A second challenge arose from the
imbalanced class distribution in the extracted training data, which occurred due to wide discrepancies in
the area coverage of each OSM-LU/OSM-N class. To address the first challenge, three relatively noise-
tolerant algorithms e naïve bayes (NB), decision tree (C4.5 algorithm), and random forest (RF) e were
evaluated for image classification. To address the second challenge, artificial training samples were
generated for the minority classes using the synthetic minority over-sampling technique (SMOTE). Image
classification accuracies were calculated for a four-class, five-class, and six-class LULC system to assess
the capability of the proposed methods for mapping relatively broad as well as more detailed LULC types,
and the highest overall accuracies achieved were 84.0% (four-class SMOTE-RF result), 81.0% (five-class
SMOTE-RF result), and 72.0% (six-class SMOTE-NB result). RF and NB had relatively similar overall ac-
curacies, while those of C4.5 were much lower. SMOTE led to higher classification accuracies for RF and
C4.5, and in some cases for NB, despite the noise in the training set. The main advantages of the proposed
methods are their cost- and time-efficiency, as training data for supervised classification is automatically
extracted from the crowdsourced datasets and no pre-processing for cloud detection/cloud removal is
performed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Land use/land cover mapping by supervised image classification

Land use/land cover (LULC) maps derived from remotely-sensed
imagery are used for a wide range of applications, including land
use planning (Dewan & Yamaguchi, 2009), population estimation
(Fisher & Langford, 1996), natural resource inventory (Food and
Agriculture Organization of the United Nations, 2010), and biodi-
versity modeling (Roy & Tomar, 2000). The number and types of
LULC classes mapped vary from study to study depending on the

intended application, and can range from a simple binary classifi-
cation (e.g. to map buildings (Belgiu & Dr�aguţ, 2014), residential
areas (Johnson, Bragais, Endo, Magcale-Macandog, & Macandog,
2015), or forests (Shimada et al., 2014)) to a detailed species-level
vegetation classification with dozens of classes (Yu et al., 2006).
LULC maps are often generated using supervised image classifica-
tion algorithms; algorithms which utilize the spectral and/or
contextual information of sample pixels with LULC class labels (i.e.
training data) to classify the remaining unlabeled pixels in the
image (Jensen, 2005). The accuracy of the maps generated using
supervised classification techniques is affected by, among other
things, the quality of the remotely-sensed imagery and the quality
and quantity of the training data (Brodley & Friedl, 1999; Huang,
Davis, & Townshend, 2002; Lippitt, Rogan, & Li, 2008).* Corresponding author.
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1.2. Image quality and LULC classification

The quality of remotely-sensed imagery for LULC classification is
often affected by the level of cloud cover in the image, as clouds
block a sensor's view of the ground at many electromagnetic
wavelength regions (e.g. visible (VIS), near infrared (NIR), shortwave
infrared (SWIR), and thermal infrared (TIR) wavelength regions).
When clouds are present at a pixel location, pixel information is
extracted from the cloud rather than from the feature on the ground,
resulting in “attribute noise” (Nettleton, Orriols-Puig, & Fornells,
2010) because the information is not useful for classification of the
pixel. In tropical regions and other areas with frequent cloud cover,
this can make LULC mapping particularly challenging (Foody, Boyd,
& Cutler, 2003; Hoan et al., 2013). To overcome this issue of attribute
noise from cloud cover, a recent study by Schneider (2012) found
that a so-called “brute force approach” of drastically increasing the
data quantity (i.e. using many time-series images) could reduce the
negative impact of noise in individual images. Schneider (2012)
simply used all Landsat images with relatively little cloud cover,
including “scan line corrector off” Landsat 7 images (http://landsat.
usgs.gov/products_slcoffbackground.php) containing missing data,
for mapping LULC change in several urban areas of China, and found
that a boosted decision tree algorithm could efficiently make use of
the high dimensional, noisy data for classification. Although more
sophisticated methods exist for dealing with cloud contamination,
e.g. various cloud-removal methods which use ancillary datasets to
estimate the spectral and spatial properties of pixels located under
cloud cover (Hoan et al., 2013; Jia et al., 2014; X. Zhu, Gao, Liu, &
Chen, 2012; Zhu & Woodcock, 2012), the brute force approach has
the advantages of speed and simplicity because it does not require
additional image pre-processing or the use of ancillary datasets.

1.3. Training data quality/quantity and LULC classification

In addition to attribute noise, class labeling errors in the training
data (i.e. pixels with wrong class assignments), i.e. “class noise”
(Frenay & Verleysen, 2013), can also have an impact on classifica-
tion accuracy. Unfortunately, high quality training data for LULC
classification can be time-consuming, difficult, and/or expensive to
obtain, particularly if ground surveys are needed to collect the data.
LULC is rapidly changing in many countries due to urbanization, so
up-to-date LULC maps are needed in these areas for effective land
use management and planning. However, there is not always suf-
ficient time or funding available to gather high quality, up-to-date
training data.

Training data quantity is also an issue, particularly when the
quantity of image data used for classification (e.g. number of time-
series images or number of image bands) is high. This is because
increasing the number of classification variables past a certain
threshold (which varies depending on the classification algorithm)
can lead to lower classification accuracy if the number of training
samples is not also increased, which is known as the Hughes
phenomenon (Hughes, 1968). Section 1.2. discusses that higher
image quantity can help to overcome low image quality, so this
issue of training data quantity is quite related.

1.4. Crowdsourced geographic datasets as a source of training data

Volunteered geographic information (VGI), geographic infor-
mation on LULC features provided by citizen volunteers rather than
official government agencies (Goodchild, 2007), is a relatively new
source of freely-available crowdsourced information thatmay serve
as a supplemental or even alternative source of training data

(Estima & Painho, 2015; Jokar Arsanjani, Helbich, & Bakillah, 2013).
In particular, this (class-labeled) VGI data could be quite useful in
cases where higher quality training data cannot be collected in
sufficient quantity. VGI is typically created by volunteers tracing of
features onto georeferenced aerial/satellite images or by their
collection of GPS data in the field (Neis & Zielstra, 2014). As one
example, OpenStreetMap (OSM; https://www.openstreetmap.org/)
lets volunteers create and edit geographic data online using
Microsoft Bing Aerial Imagery as a backdrop. Although VGI is less
accurate than geographic information from official sources in some
cases due to many volunteers' lack of formal training (Estima &
Painho, 2013; Haklay, 2010; Jokar Arsanjani, Mooney, & Zipf,
2015), it often provides the cheapest (and sometimes only) source
of geographic information (Goodchild, 2007). OSM is one of the
largest sources of VGI (Neis& Zielstra, 2014; Neis& Zipf, 2012), so it
has the potential to provide a high quantity of training data inmany
areas (although data quality may be an issue). Some popular OSM
datasets include “roads” (http://wiki.openstreetmap.org/wiki/
Map_Features#Highway), “buildings” (http://wiki.openstreetmap.
org/wiki/Buildings), “points of interest” (http://wiki.
openstreetmap.org/wiki/Points_of_interest), “landuse” (http://
wiki.openstreetmap.org/wiki/Map_Features#Landuse), and “natu-
ral” (http://wiki.openstreetmap.org/wiki/Map_Features#Natural).

As already stated, although these OSM datasets (and other
crowdsourced datasets) can potentially be used to extract a large
quantity of training data due to their relatively wide area coverage,
a challenge with using them is the presence of errors in the OSM
data, which would lead to class noise in the training dataset. One
previous study investigated the class noise in the “landuse” (OSM-
LU) and “natural” (OSM-N) datasets by comparing them with an
official LULC map of Portugal, and found a 76% agreement between
the OSM data and the official LULC map in areas where the datasets
overlapped (Estima & Painho, 2013). Another study performed a
similar comparison in four major German cities (Berlin, Frankfurt,
Hamburg, and Munich) and found that the agreement between the
OSM-LU/OSM-N and official datasets ranged from 64% (for
Hamburg) to 77% (for Frankfurt) (Jokar Arsanjani et al., 2015). The
results of these studies suggest that the OSM-LU and OSM-N
datasets can be seen as at least moderately accurate.

In terms of past studies using OSM data to extract training data
for LULC classification, there is only one that we are aware of, and it
involved using OSM “points-of-interest” to extract training data for
LULC classification (Jokar Arsanjani et al., 2013). In that study, the
OSM data was visually pre-screened and all mislabeled points were
removed prior to extracting training data (Jokar Arsanjani et al.,
2013). Manual screening can be quite time- and labor-intensive
though, particularly if there are many OSM polygons to inspect.
On the other hand, some classification algorithms are relatively
tolerant to mislabeled training data (i.e. class noise), so it may be
possible to use the OSM data for classification evenwithout manual
pre-screening.

A previous study assessed the class noise-tolerance of four
broad types of classification algorithms - probabilistic, decision tree
(DT), instance-based, and support vector machines (SVM) algo-
rithms e and found probabilistic methods, specifically the naïve
bayes (NB) algorithm (John & Langley, 1995), best dealt with class
noise, while DT and instance-based algorithms showed moderate
performance, and SVM performed the worst due to its sensitivity to
mislabeled training data located along the support vectors
(Nettleton et al., 2010). Another study, which considered the effects
of class imbalance (i.e. discrepancy in the number of training
samples per class) in addition to class noise and attribute noise,
found that the Random Forest (RF) algorithm (Breiman, 2001), an

B.A. Johnson, K. Iizuka / Applied Geography 67 (2016) 140e149 141

http://landsat.usgs.gov/products_slcoffbackground.php
http://landsat.usgs.gov/products_slcoffbackground.php
https://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Map_Features#Highway
http://wiki.openstreetmap.org/wiki/Map_Features#Highway
http://wiki.openstreetmap.org/wiki/Buildings
http://wiki.openstreetmap.org/wiki/Buildings
http://wiki.openstreetmap.org/wiki/Points_of_interest
http://wiki.openstreetmap.org/wiki/Points_of_interest
http://wiki.openstreetmap.org/wiki/Map_Features#Landuse
http://wiki.openstreetmap.org/wiki/Map_Features#Landuse
http://wiki.openstreetmap.org/wiki/Map_Features#Natural


Download	English	Version:

https://daneshyari.com/en/article/83216

Download	Persian	Version:

https://daneshyari.com/article/83216

Daneshyari.com

https://daneshyari.com/en/article/83216
https://daneshyari.com/article/83216
https://daneshyari.com/

