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A B S T R A C T

Multiple sclerosis (MS) is a chronic, demyelinating disease that affects the central nervous system and is char-
acterized by a complex pathogenesis and difficult management. The identification of new biomarkers would be
clinically useful for more accurate diagnoses and disease monitoring. Metabolomics, the identification of small
endogenous molecules, offers an instantaneous molecular snapshot of the MS phenotype. Here the metabolomic
profiles (utilizing plasma from patients with MS) were characterized with a Gas cromatography-mass spectro-
metry-based platform followed by a multivariate statistical analysis and comparison with a healthy control (HC)
population. The obtained partial least square discriminant analysis (PLS-DA) model identified and validated
significant metabolic differences between individuals with MS and HC (R2X = 0.223, R2Y = 0.82, Q2 = 0.562;
p < 0.001). Among discriminant metabolites phosphate, fructose, myo-inositol, pyroglutamate, threonate, L-
leucine, L-asparagine, L-ornithine, L-glutamine, and L-glutamate were correctly identified, and some resulted as
unknown. A receiver operating characteristic (ROC) curve with AUC 0.84 (p = 0.01; CI: 0.75–1) generated with
the concentrations of the discriminant metabolites, supported the strength of the model. Pathway analysis in-
dicated asparagine and citrulline biosynthesis as the main canonical pathways involved in MS. Changes in the
citrulline biosynthesis pathway suggests the involvement of oxidative stress during neuronal damage. The results
confirmed metabolomics as a useful approach to better understand the pathogenesis of MS and to provide new
biomarkers for the disease to be used together with clinical data.

1. Introduction

Multiple sclerosis (MS) is a chronic, inflammatory disease of the
central nervous system (CNS) characterized by demyelination and si-
multaneous axonal and neuronal degeneration that occurs from the
earliest clinical stages of the disease (Lassmann et al., 2007). MS pa-
thology and immunopathogenesis are extremely complex and are
widely believed to be driven by heterogeneous and multifaceted me-
chanisms involving both adaptive and innate immune systems
(Lassmann et al., 2007), oxidative damage (Fischer et al., 2013; Haider
et al., 2011), and mitochondrial injury (Campbell et al., 2011; Mahad
et al., 2008). The relevance of each factor varies in relation to the type
and location of the lesions (Haider et al., 2016), disease course, and
disease evolution (Mahad et al., 2015). The complexity of MS is also
related to different clinical manifestations, radiologic features and drug
responses, resulting in complex management of the disease (Bermel

et al., 2013; Bielekova et al., 2005; Lublin et al., 2014).
The identification of biomarkers can be clinically useful for a more

accurate diagnosis, prognosis, treatment choice and disease monitoring
(Villoslada and Baranzini, 2012). In recent years, there have been ad-
vances in molecular biology, cellular immunology, and the new “omics”
(genomics, transcriptomics, proteomics, and metabolomics), which
focus on exploring the processes underlying disease pathogenesis to
provide a list of possible MS biomarkers (Tumani et al., 2008;
Villoslada, 2010).

In the plethora of omics, metabolomics concerns the identification
and quantification of small endogenous molecules; i.e., the metabolites,
in a biological system (Hollywood et al., 2006; Psychogios et al., 2011;
Wishart et al., 2008). Because the metabolites represent the final pro-
duct of the physiological processes in a living organism (Mangalam and
Poisson, 2013; Nicholson and Lindon, 2008; Zhang et al., 2013), the
profiling of the metabolome in tissues and biofluids offers an
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instantaneous molecular image of the phenotype (Cocco et al., 2016;
Reinke et al., 2014a). Among the several analytical techniques avail-
able, nuclear magnetic resonance (NMR) and gas chromatography
coupled with mass spectrometry are the most commonly used methods
in the metabolomics field. In particular, these techniques have been
used to investigate a number of pathologies and neurological disorders,
including MS (Hatano et al., 2016; Kork et al., 2012; Mehrpour et al.,
2013; Regenold et al., 2008; Reinke et al., 2014a; Sato et al., 2012).
However, the metabolomic studies on MS published to date are more
focused on cerebrospinal fluid (CSF) rather than blood serum/plasma.
To cover this knowledge gap, we (Cocco et al., 2016) recently con-
ducted a study using 1H NMR-based metabolomics with blood plasma
samples from patients with MS.

Aim of the study was to integrate previous results with NMR by
using Gas chromatography coupled with mass spectrometry to better
define the metabolomic profile and discriminate a group of MS patients
from healthy controls (HC).

2. Materials and methods

2.1. Composition of the cohort and sample collection

The cohort consisted of 65 participants (n = 32 MS patients; n = 33
HC) from the original pool recruited by Cocco et al. (2016). The pa-
tients had a definite MS diagnosis according to the revised McDonald
criteria (McDonald et al., 2001; Polman et al., 2011, 2005); were free
from other significant comorbidities; and had been therapy-free for at
least 90 days (i.e., disease modifying drugs and steroids) (Cocco et al.,
2016). The HC matched the MS patients demographically and ethni-
cally and were volunteers recruited from healthcare staff and relatives
and friends of the patients. Fasting blood samples (10 mL) were with-
drawn from each subject, and plasma was immediately separated via
centrifugation (10,000 rpm). Samples were immediately stored at
−80 °C until the analysis.

2.2. Standard protocol approvals, registrations, and patient consents

The study was approved by our institutional Ethics Committee, and
written informed consent was obtained from each participant.
Experimentation and methods were performed according to the ap-
proved guidelines. The study was conducted in accordance with the
principles of Good Clinical Practice.

2.3. Sample preparation and metabolite extraction

Plasma samples were thawed and then centrifuged (4 °C, 10 min,
4500 rpm). Metabolites were extracted by adding 2400 μL of working
solution (methanol/chloroform 1:1 plus 350 μL of H2O) to 800 μL of
each sample. After vortexing, samples were then centrifuged at room
temperature (30 min, 4000 rpm) to obtain separation of the hydrophilic
and hydrophobic phases. An aliquot of 700 μL of water-phase super-
natant per sample was transferred in a clean Eppendorf tube and then
concentrated overnight to dryness in a speed-vacuum. Blank extractions
were also made to avoid chemical noise due to laboratory equipment
and the chemicals used for derivatization. Blanks were processed fol-
lowing the same procedures used for the samples.

2.4. Derivatization of samples

Dried samples were derivatized in a two-step process of methox-
imation followed by silylation, according to a previous described pro-
tocol (Caboni et al., 2016) with small variations. First, a 100 μL of
methoxyamine hydrochloride in pyridine solution (10 mg/mL) was
added to the extract (17 h). Next, 100 μL of N-trimethylsilyltri-
fluoroacetamide (MSTFA) was added and vortexed (R.T., 1 h). The
samples were then diluted in 600 μL hexane plus undecane (25 ppm),

which was used as retention standard (R.S.) to evaluate retention time
reproducibility. Diluted samples were then filtered (PTFE 0.45 μmø)
and transferred to an auto-sampler glass vial.

2.5. Untargeted Gas cromatography–mass spectrometry analysis and
acquisition of spectra

The derivatized extracts were placed into the autosampler of an
Agilent 7890 A gas chromatograph coupled with an Agilent 5975C mass
spectrometer in a random sequence in order to minimize experimental
bias due to class membership. Blank samples were distributed at the
beginning, end and during acquisition. The 1 μL aliquots of the samples
were injected splitless by an autosampler onto a HP-5MS capillary
column (5%-phenyl-methylpolysiloxane; 30 m, 0.25 mm i.d., 0.25 μm
film thickness). The initial oven temperature was set at 50 °C (held
3 min) and increased at 10 °C/min to 250 °C for a total run of 35 min.
Acquisitions were performed in electron impact mode and full scan
monitoring mode (m/z 50–800). The injector and ion source tempera-
tures were set at 200 °C and 250 °C, respectively. Helium was used as
carrier gas in constant pressure mode (7.6522 psi).

2.6. Data processing

Obtained chromatograms of blanks and samples were exported in
the netCDF format using MSD Chemstation E.02.02.1431 and processed
using R version 3.2.1 (R Developement Core Team, 2015). In particular,
the library XCMS (Smith et al., 2006) version 1.44.0 was used for peak
extraction, grouping and retention time correction. The CentWave al-
gorithm (Tautenhahn et al., 2008) was used to perform peak density
and wavelet based feature detection with a chromatographic peak
width between 5 s and 10 s, a maximal tolerated m/z deviation in
consecutive scans of 0.1 in ppm, a signal-to-noise cutoff of 1, and a
minimum difference in m/z for peaks with overlapping retention times
of 0.01. Moreover, mass traces were retained if they contained at least 5
peaks with intensities higher than 100. The retention time correction
across samples was performed with a centre-star strategy using the
Obiwarp method (Prince and Marcotte, 2006) with a profstep (step size
to be used for the generation of profiles from the raw data) of 0.1 ppm.
Peaks belonging to different samples were grouped together according
to overlapping m/z bins and similar retention times using the density
method (Smith et al., 2006). The grouping step was performed using a
width of overlapping m/z bins of 0.25 and a bandwidth of the Gaussian
smoothing kernel of 3. Only peaks belonging to at least 20% of the
samples in either the pathologic or control groups were retained for
further analyses. This grouping passage will always yield some groups
that do not contain peaks from all samples. Hence, the method “chrom”
of the function fillpeaks was used to integrate row data into the groups
for the missing samples. Successively, the library CAMERA (Kuhl et al.,
2012) version 1.24.1 was utilized to annotate isotopes and cluster peaks
into pseudospectra (i.e., metabolites) according to the extracted ion
chromatogram (EIC) correlation between peaks inside a sample with a
threshold of 0.75. The matrix containing all samples, the features found
across samples and their grouping into pseudospectra were processed
with in-house python scripts to: 1) eliminate signals present in the
blanks representing the R.S.as well as contamination and 2) normalise
the data using total area normalisation in order to determine the re-
lative concentration for each peak in a sample based on the total area of
the peaks found in the sample. These relative concentrations, expressed
as a ratio of the peak area to the total sample area (peak area/total
sample area), were used for all the subsequent analyses. Trimethylsi-
lylated metabolite identities were checked using the NIST library, and
the obtained spectra were matched with those available on the Human
Database Metabolome (HMDB) or via injection of derivatized pure
standards using the same acquisition parameters as described above.
Details of the identification of discriminant metabolites are reported in
Table S1.
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