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a b s t r a c t

A new method for enhancement of damping capabilities of segmented constrained layer damping mate-
rial is proposed. Constrained layer damping has been extensively used since many years to damp flexural
vibrations. The shear deformation occurring in the viscoelastic core is mainly responsible for the dissipa-
tion of energy. Cutting both the constraining and the constrained layer, which leads to segmentation,
increases the shear deformation at that position. This phenomenon is called edge effect. A two-dimen-
sional model of a cantilever beam has been realized for further investigations. An optimization algorithm
using mathematical programming is developed in order to identify a cuts arrangement that optimizes the
loss factor. The damping efficiency is estimated using the modal strain energy method. The Nelder–Mead
simplex method is used to find the best distribution of cuts. In order to take into account geometrical lim-
itations, the exterior point penalty method is used to transform the constrained objective function into an
unconstrained objective function. As the optimization problem is not convex, a modal analysis is per-
formed at each mode in order to identify initial cuts positions that lead to a global minimum. Over a large
frequency range, the algorithm is able to identify a distribution of cuts that optimizes the loss factor of
each mode under consideration.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For many years vibration damping has been an important crite-
rion in the design phase of many engineering applications. Large
dissipation capabilities over a wide frequency range are desired.
A common solution is to use a constrained viscoelastic material
bonded to the vibrating structure. The damping material is applied
in a sandwiched configuration. The inner surface is attached to the
host structure and the outer surface is constrained by a stiff cover.
With such configuration, the damping layer is mainly deformed in
shear. The energy is dissipated into heat because of the relaxation
process occurring in the long molecule chains [1,2]. Further
improvement can be achieved by cutting the whole damping treat-
ment. As a result, the number and the volume of high-shear re-
gions is increased leading to a higher damping rate. Additionally,
structural topology optimization can be a powerful tool to further
improve the design of damping treatment.

1.1. Literature review

In 1959, Kerwin [3] published his observation that a stiff con-
straining layer, placed on top of the viscoelastic damping layer,

can significantly increase the structural damping rate. Ungar and
Kerwin [4] re-examinated the concept of loss factor applied for vis-
coelastic systems. Their main conclusion is that the stored energy
can be estimated only if the energy storage and dissipation mech-
anisms are known. DiTaranto [5] determined the loss factor of a
freely vibrating laminated beam having any possible boundary
conditions using an analytical model. Mead and Markus [6] derived
a mathematical expression for the transverse displacement of a
three-layered sandwich beam with a viscoelastic core. They as-
sumed different boundary conditions at one end of the beam such
as no transverse displacement, no rotation, no bending moment, or
no shear force. Rao [7] also presented a formula for the frequency
and loss factor of a sandwich beam under the following boundary
conditions: clamped–free, clamped–simply supported, clamped–
clamped, simply supported–simply supported, and free–free.
Plunkett and Lee [8] invented the concept of segmenting the con-
straining layer. Their study included experiments and derivation
of a formula for optimum distance of their equidistant cuts
arrangement. Kress [9] solved a shear-lag model for simulating
segmented constrained layer damping treatment, similar to the
investigation by Plunkett and Lee, with a transfer-matrix method.
An illustration of the shear stress distribution over the whole
length of the beam was given. A good agreement between
simulations and measurements was observed. He also derived a
simple formula for optimum spacing of his equidistant cuts
arrangement that is different from the formula of Plunkett and
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Lee. Nevertheless, the effect of cuts were only investigated at the
first bending mode of a cantilever beam. Torvik and Strickland
[10] investigated a structure consisting of a base plate with a multi-
ple-layer damping treatment with unanchored constrained layers,
attached to one side of it. The constraining layers were segmented
in two-dimensions. In the field of laminated composites, Mantena
et al. [11] also investigated the optimal side length of constrained
layer damping material. They considered various geometric
arrangements of a load-carrying structure in terms of the clamping
situation with special regard to the damping material. The main lim-
itation of their work is that they focused their investigation on a sin-
gle mode and considered just one segment. Alam and Asmani [12]
sought optimal damping treatment design by considering as param-
eter damping material’s thickness. Huang et al. [13] did a similar
study. Kung and Singh [14] developed an energy-based approach
of multiple constrained layer damping patches. They only looked
at the effect of constrained layer damping patches at several modes
separately. In the field of active vibration control, Lesieutre and Lee
[15] performed a finite element analysis on segmented active con-
strained layer damping. Liu and Wang [16] investigated the distri-
bution of passive and active constrained layer damping patches. In
both papers, no length optimization of the damping treatment
was performed. In the field of structural optimization, genetic algo-
rithms were used by Trompette and Fatemi [17], and by Al-Ajmi and
Bourisli [18] to optimize the segments’ length. They were only able
to identify a distribution of segments for a single mode and consid-
ered only one optimization technique. No comparison with other
optimization methods on the efficiency of the selected algorithm
to find the best solution was realised. As a general remark concern-
ing all the papers above mentioned, the main limitation is that the
different studies did not take into account a large frequency range.
Additionaly, many of them just assumed either a fixed length for
each segment or a fixed number of segments.

1.2. Objective and content of the present work

The objective of the present work is to develop an optimization
algorithm based on mathematical programming that enables to
find a single cuts arrangement for optimum damping of all modes
within a selected frequency range. Additionally, a new mode-
shaped based technique is proposed for the initial conditions. It
aims at facilitating the finding of the best design.

In Section 2, the finite element modeling is addressed. The
material data and geometrical parameters are also presented. The
method to estimate the modal loss factor is described in Section
3. A finite element analysis is performed on a cantilever beam with
a segmented constrained layer damping in Section 4. It enables to
observe high-shear deformation regions and to have a clear under-
standing of the phenomena under interest. The dissipated energy is
also quantified. Section 5 discusses the efficiency of segmented
constrained layer damping material with equally spaced cuts. In
Section 6, the optimization method is described. The convexity
properties of the objective function are analyzed to investigate
whether the solutions are unique. Results are discussed for a single
mode optimization and over a large frequency range in Section 7.
In Section 8, a guideline for the enhancement of constrained layer
damping material via segmentation is proposed as a conclusion.

2. Finite element modeling

2.1. Overview

The structure of interest is a cantilever elastic beam on which is
bonded a constrained damping layer. The method used for the fi-
nite element modeling is illustrated in Fig. 1.

The beam and the constraining layer are modeled with two-
dimensional structural solid elements called plane42 in ANSYS
11.0. The viscoelastic core is modeled with two-dimensional struc-
tural solid elements called plane182. All of these utilize two trans-
lations at each of the four nodes. An important feature of the
plane182 element is the possibility to specify damping in terms
of a loss factor as a function of frequency and temperature. It also
has large strain capabilities. Therefore, the type of element is only
used for the damping material. The thickness of each layer of the
simulation model is given in Table 1.

The model includes details of a realistic clamping situation, as
illustrated in Fig. 2a. The other model shown in Fig. 2b is oversim-
plified. It cuts off the influence of the realistic damping on the
vibration behaviour and introduces artificial singular stress con-
centrations which increase with increasing the mesh density.

2.2. Mathematical model

The system under consideration involves a base beam to which
is added a viscous elastic layer and a further metallic constraining
layer. The whole system is assumed to be in a state of plane stress,
i.e. all stresses with an index z vanish. At each node of each
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Fig. 1. Finite element model of a constrained layer damping treatment.

Table 1
Thicknesses table.

Thickness (m)

Beam 1 � 10�2

Constrained layer 1 � 10�3

Constraining layer 1 � 10�3

Free region (0.9 m)Clamped region
(0.1 m)
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(a) Realistic model

x

y

z

(b) Oversimplified model

Fig. 2. Realistic and oversimplified models.
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