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a b s t r a c t

The purpose of this study is to investigate nonlinear behavior of reinforced concrete (RC) structures with
the plasticity modeling. For this aim, a nonlinear finite element analysis program is coded in MATLAB.
This program contains several yield criteria and stress–strain relationship for compression and tension
behavior of concrete. In this paper, the well-known criteria, Drucker–Prager, von Mises, and Mohr Cou-
lomb, and a new criterion-Bresler–Pister are taken into account. The elastic–perfectly plastic and Saenz
stress–strain relationships in compression and tension stiffening in tension behavior of concrete are used
with four different yield criteria mentioned above. The proposed models are in good agreement with the
experimental and analytical results taken from the literature. It is concluded that the coded program, the
proposed models, and Bresler–Pister criterion can be effectively used in nonlinear analysis of reinforced
concrete beams.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Considerable constitutive models have been proposed to define
nonlinear behavior and stress–strain relationship of reinforced
concrete (RC) material. These models can be classified into ortho-
tropic models, nonlinear elastic models, plasticity models, endo-
chronic models, fracture mechanics models and micromodels [1].
Using these models, several studies have been made in the field
of nonlinear analysis of RC structure to predict the behavior of
reinforced concrete structures more reliable. Arslan [2] investi-
gated the sensitive of the Drucker–Prager modeling parameters
and the use of it in plasticity theory for shear design of RC beams.
Park and Klingner [3] presented a nonlinear analysis study of RC
members by using plasticity multiple failure criteria. Wang and
Hsu [4] applied the nonlinear finite element analysis to various
types of RC structures using a new set of constitutive models. Bra-
tina et al. [5] presented a study on materially and geometrically
nonlinear analysis of RC planar frames by dealing with the fiber-
based constitutive equations of concrete and steel. Zhao et al. [6]
studied the load-deflection and failure characteristics of deep RC
coupling beams. Pankaj and Lin [7] used two similar continuum
plasticity material models to examine the influence of the material
modeling on the seismic response of RC frame structures. Belmou-
den and Lestuzzi [8] investigated post peak modeling and nonlin-
ear performance of RC structural walls. Bischoff [9,10],

Stramandinoli and Rovere [11] and Dede and Ayvaz [12] studied
on RC structures by considering tension stiffening effect.

Among the models given above, plasticity models need a yield
function, a hardening rule, a flow rule and a stress–strain relation-
ship to construct the plastic material matrix for the plastic behav-
ior of concrete. A review of the literature indicates that there are
not any studies based on the Bresler–Pister criterion for plastic
behavior of concrete. This yield function can be found in the books
concerning with the plasticity theory. But, its plasticity material
matrix or any application of this function to the RC structures is
not found.

In this paper, derivation of plastic material matrix based on
Bresler–Pister yield function and two applications of this function
to the RC beams are presented. For this aim, a nonlinear finite ele-
ment analysis program is coded in MATLAB. This program contains
several yield criteria and stress–strain relationship for compressive
and tensile behavior of concrete. In the nonlinear analysis, the
well-known criteria, Drucker–Prager, von Mises, and Mohr Cou-
lomb and as a new criterion, Bresler–Pister, are taken into account.
The elastic–perfectly plastic and Saenz stress–strain relationship in
compressive and tension stiffening in tensile behavior of concrete
are used with four different yield criteria mentioned above.

2. Yield criteria for concrete

The concrete is assumed to be elastic until it reaches the yield
limit. Beyond yielding, plastic deformations take place. So, residual
plastic deformations remain after removing the loading. A consid-
erable amount of formulations have been proposed for concrete as
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a yield function such as Drucker–Prager, von Mises, Mohr Cou-
lomb, Tresca, Rankine, William Warnke, Ottosen, Hsieh Ting Chen,
and Bresler–Pister [13]. The well-known yield function for Druc-
ker–Prager, von Mises, and Mohr Coulomb are given by the follow-
ing equations, respectively [14].
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where f is yield function, a and k are the material parameters, c is
cohesion, / is internal friction angle, I1 is the first invariant of stress
tensor, J2 is the second invariant of deviator stress tensor, J3 is the
third invariant of deviator stress tensor, and h is angle of similarity.

The Bresler–Pister criterion is the extension of Drucker–Prager
criteria. This yield function in terms of octahedral stresses is given
by
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where a, b, and c are the material parameters of this yield function.
These parameters can be established by using available experimen-
tal test data given in Table 1 [14]. In this table, �f 0t and �f 0bc are the nor-
malized strengths, f 0t is uniaxial tensile strength, f 0c is uniaxial
compressive cylinder strength, f 0bc is equal biaxial compressive
strength, roct is octahedral normal stress and soct is octahedral shear
stress.

The octahedral normal and shear stresses are given by the fol-
lowing equations, respectively.
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The normalized strengths are given by the following equations.
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When these experimental test data are substituted into Eq. (5), the
parameters a, b and c can be obtained by solving a system of three
linear equations given below.
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where
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Substituting Eq. (6) into Eq. (5) and rewriting Eq. (5), the Bresler–
Pister yield function in terms of stress invariant can be obtained,
and it is given as

f ¼ c
9f 02c

� �
I2
1 �

b
3f 0c

� �
I1 �

ffiffiffiffi
J2

p
ffiffiffi
3
p

f 0c

 ! ffiffiffiffi
J2

p
� a: ð10Þ

3. Plastic material matrix for concrete based on Bresler–Pister
criterion

In the plasticity theory, total strain can be assumed to be the
sum of the elastic strain and plastic strain as given in Eq. (11),
and stress increment, drij, for strain increment, deij, is given in
Eq. (12) [15].

deij ¼ dee
ij þ dep

ij ð11Þ
drij ¼ Dep

ijkldeij ð12Þ

where Dep
ijkl is elastic–plastic material matrix. In the case of associ-

ated flow rule the general form of this matrix is given as,

Dep
ijkl ¼ Dijkl þ Dp

ijkl ð13Þ

Nomenclature

f 0c uniaxial compressive cylinder strength
f 0t uniaxial tensile strength
h angle of similarity
s effective von Mises stress
/ internal friction angle
d kronecker delta
a, k material parameters
ecr cracking strain of concrete
rcr cracking stress of concrete
rf, ef control point coordinates on stress–strain curve
roct octahedral normal stress
soct octahedral shear stress
ep concrete strain corresponding to rp

rp peak concrete compressive stress
qx reinforcement ratio in global direction of the X axis
qy reinforcement ratio in global direction of the Y axis
c cohesion

D elastic material-stiffness tensor
Dc material matrix of concrete
Dep elastic–plastic material-stiffness tensor
Dp plastic material-stiffness tensor
Ds material matrix of equivalent reinforcing bar elements
E Young’s modulus
f yield function
Hp plastic hardening modulus
I1 first invariant of stress tensor
J2 second invariant of stress deviator tensor
J3 third invariant of deviatoric stress tensor
K initial tangent modulus
s deviatoric stress
e strain
ee elastic strain
ep plastic strain
r stress

Table 1
Test data for Bresler–Pister Criterion.
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