Materials and Design 31 (2010) 336-342

Contents lists available at ScienceDirect

Materials and Design

Materials
& Design

—

journal homepage: www.elsevier.com/locate/matdes el

Assessment of the effect of existing corrosion on the tensile behaviour
of magnesium alloy AZ31 using neural networks

V. Kappatos *, A.N. Chamos, Sp.G. Pantelakis

Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Panepistimoupolis Rio, 26500 Patras, Greece

ARTICLE INFO ABSTRACT

Article history:

Received 18 May 2009
Accepted 8 June 2009
Available online 10 June 2009

Keywords:
Magnesium alloy
Mechanical properties
Corrosion damage
Neural networks

A concept has been devised to assess the effect of existing corrosion damage on the residual tensile prop-
erties of structural alloys and applied for the magnesium alloy AZ31. The concept based on the use of a
radial basis function neural network. An extensive experimental investigation, including metallographic
corrosion characterization and mechanical testing of pre-corroded AZ31 magnesium alloy specimens,
was carried out to derive the necessary data for the training and the prediction module of the developed
neural network model. The proposed concept was exploited to successfully predict: the gradual tensile
property degradation of the alloy AZ31 to the results of gradually increasing corrosion damage with
increasing corrosion exposure.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The multifarious variables that are involved in corrosion of
structures in-service are convoluted, complex and interacting [1].
On the other hand, traditional approaches to understanding and
assessing the effects of corrosion on structural components rely
on classic textbooks models of general corrosion and the metallo-
graphic characterization of corrosion damage.

In recent years, a number of incidents (e.g. Aloha, 1988) and the
results of various investigations, e.g. [2], provided evidence that
the assessment of the effects of corrosion damage on residual
strength and integrity of structural components operating in corro-
sive environment is a problem far more complex than anticipated
[1-4].

The development of methodologies capable of facing the above
problem requires a comprehensive understanding and character-
ization of corrosion damage mechanisms and relies heavily on
the existence of sufficient experimental data. However, limited
experimental data exist in published literature on the mechanical
performance of corrosion damaged structural alloys. Examples of
such data, mostly obtained from materials subjected to accelerated
laboratory corrosion conditions and only very rarely from materi-
als corroded in service may be found, e.g. in [3-10]. Essential cause
for the limited amount of such data available is that their produc-
tion is time consuming and expensive.
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The use of Neural Networks (NN) to make predictions of the
mechanical properties of alloys is a relatively new concept, but
one that has received considerable interest in recent years [11-
17].In [11], the authors have introduced three different back-prop-
agation NN models which can predict the (i) impact toughness of
quenched and tempered steels exposed to various postweld heat
treatment cycles, (ii) simulated heat affected zone toughness of
pipeline steels resulting from in-service welding and (iii) hot duc-
tility and hot tensile strength of microalloyed steels. In [12], some
results of the research connected with the development of a new
approach based on artificial intelligence for predicting the volume
fraction and mean size of the phase constituents occurring in steel
after thermomechanical processing and cooling are presented. A
NN model was used to predict mechanical properties of dual phase
steels and sensitivity analysis was performed to investigate the
importance of the effects of pre-strain, deformation temperature,
volume fraction and morphology of martensite on room tempera-
ture mechanical behaviour of these steels [13].

In [14], a NN was developed for the analysis and simulation of
the correlation between the properties of maraging steels and
composition, processing and working conditions. The input param-
eters of the model consist of alloy composition, processing param-
eters (including cold deformation degree, ageing temperature and
ageing time), and working temperature. The outputs of the NN
model include property parameters, namely: ultimate tensile
strength, yield strength, elongation, reduction in area, hardness,
notched tensile strength, Charpy impact energy, fracture toughness
and martensitic transformation start temperature.

In [15], a model for predicting the mechanical properties of the
alumina matrix ceramic was established by means of a NN, using
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hardness, elastic modulus, density, as well as content of the matrix
material and additives, as the input parameters of the network
model. The output parameters of the NN are flexural strength
and fracture toughness of the composite ceramic materials. In
[16], a model was developed for the analysis and prediction of
the correlation between processing (heat treatment) parameters
and mechanical properties in titanium alloy by applying NN.

A NN was trained and used to predict fatigue life for specified
sets of loading and environmental conditions, using a data base
of 1036 fatigue tests for carbon and low-alloy steels in [17]. It cov-
ers an adequate range of compositional and structural parameters,
loading strain rate, temperature, and water chemistry. By finding
patterns and trends in the data, the NN can estimate the fatigue life
for any set of conditions.

In the present work, a concept to assess the effect of existing
corrosion damage on the tensile behaviour of the wrought magne-
sium alloy AZ31 has been devised. The concept relies on the exploi-
tation of Radial Basis Function (RBF)-NN. For the developing of the
NN, extensive experimental investigation has been carried out
including corrosion characterization and measurements of
mechanical properties degradation after several corrosion expo-
sure times.

To characterize corrosion average and maximum pit depth as
well as pitting density were measured. In the proposed model,
these characteristics are used as input parameters in a NN, in order
to correlate the corrosion damage to the tensile properties of the
corroded material. The developed NN was used for predicting the
time dependency of the tensile mechanical properties degradation
on the basis of corrosion damage characteristics.

2. Experimental work
2.1. Material

The experimental investigation was carried out for the magne-
sium structural alloy AZ31. It was received in sheet from of 2 mm
nominal thickness. The material is characterized as high-purity
(hp), as the concentration of the contaminants (Fe, Ni and Cu)
was held under certain limits. After the rolling procedure the mate-
rial was subjected to annealing (O-temper) at 300 °C for 30 min.
The chemical composition of the alloy is shown in Table 1.

2.2. Corrosion tests

To characterize corrosion damage and derive the necessary in-
put data for the NN a number of metallography specimens were
exposed to salt spray fog for different exposure times. The expo-
sure times selected for the corrosion tests were 0.5, 3, 6, 12, 24,
48 and 72 h. For the tests rectangular metallography specimens
having 100 mm x 50 mm dimensions were cut from the longitudi-
nal direction of the AZ31 sheet. Corrosion damage was predicted
by calculating maximum, average and standard deviation of pit
depth, average and standard deviation of pitting density, geometri-
cal configuration of the pits in terms of their aspect ratio as well as
pitting factor as the ratio of maximum to average pit depth.

2.3. Tensile tests

For deriving data to train the NN, a series of tensile tests was
carried out following to the exposure of AZ31 tensile specimens

Table 1
Chemical composition of magnesium alloy AZ31.

Al Zn Mn Fe Ni Cu Mg
AZ31 3.06 0.80 0.25 0.003 <0.001 0.001 Bal.

to salt spray fog for different exposure times. The tensile tests were
machined in longitudinal direction according to the ASTM E8 M
specification with 50 mm gauge length and 12.5 mm gauge width
at the reduced cross-section. For the tests servo hydraulic MTS
250 KN machine was used for the tensile tests. The tests were car-
ried out according to ASTM E8 M with a constant elongation rate of
2 mm/min. A data logger was used to store the data in a digital file.
Evaluated have been the properties: yield strength (Rp) (0.2%
proof stress), tensile strength (Ry,), elongation to fracture (As), and
strain energy density (W) (tensile toughness). In the present work,
strain energy density has been calculated as the integral of the engi-
neering tensile stress—strain curves up to elongation to fracture.
Involving engineering stress-strain curves instead of true stress—
true strain curves for calculating Wis justified as the observed tensile
necking at the elongation to fracture has not been appreciable.

2.4. Corrosion testing procedure

Prior to the corrosion exposure, the surface of the specimens
were chemically cleaned in order to remove any oily lubricant, left
from the rolling process of the material. Two subsequent solutions
were used. The first treatment was immersion of the test speci-
mens for 1 min to a solution contained 10% HNOs and ethanol.
Then the test specimens were immediately immersed for another
minute in a solution containing 10% NaOH and 90% distilled water.
Afterwards the test specimens were dried and immediately in-
serted to the corrosive environment.

For the corrosion tests, the accelerated salt spray fog environ-
ment has been used. The salt spray tests were conducted according
to ASTM B117 specification. The corrosive solution was prepared
by dissolving five parts by mass of sodium chloride in 95 parts of
distilled water. The pH of the salt solution was such that when
atomized at 35 °C the collected solution was in the pH range from
6.5 to 7.2. The pH measurement was made at 25 °C. The tempera-
ture at the exposure zone of the salt spray chamber was main-
tained at 35+1°C. After the exposure the specimens were
cleaned according to ASTM G1 specification. The solution used con-
tained 200 g chromium trioxide (CrOs), 10 g silver nitrate (AgNOs),
20 g barium nitrate (Ba(NOs),) and reagent water to make
1000 mL. The pre-corroded tensile specimens were immersed in
the above solution for about 1 min to remove the corrosion prod-
ucts from their surface and then immediately dried.

3. Experimental results
3.1. Corrosion damage characterization

Representative cross-sections of the metallography specimens
after different exposure times in the salt spray environment can
be seen in Fig. 1. At short exposure times prevailing mechanism
is the development of wide and shallow pits as it can be seen for
the example of the 3 h corrosion exposure in Fig. 1a,b. For 24 h cor-
rosion exposure time, some wide and shallow pits are still present
(Fig. 1c¢) yet narrow and deep pits are mostly observed (Fig. 1d).

A light microscope Leica DM LM had been used to measure the
average and maximum pit depth of the metallography specimens
for the investigated exposure times. The average value of the pit
depth was determined by the average of 30 pit depth measure-
ments in each metallography specimen. The surface of each plate
was divided into sections of 100 mm? in order to measure the pit-
ting density and to calculate the pitting factor. The pits depth and
density were measured and classified according to the standard
ASTM G46.

The dependency of pitting density and pit depth on the investi-
gated corrosion exposure times can be seen in the graphs of Fig. 2.
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