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ARTICLE INFO ABSTRACT
Article history_: In respiring organisms the major energy transduction flux employs the transmembrane electrochemical
Available online xxx proton gradient as a physical link between exergonic redox reactions and endergonic ADP phos-

phorylation. Establishing the gradient involves electrogenic, transmembrane H* translocation by the
membrane-embedded respiratory complexes. Among others, Complex I (NADH:ubiquinone oxidoreduc-
tase) is the most structurally complex and functionally enigmatic respiratory enzyme; its molecular
mechanism is as yet unknown. Here we highlight recent progress and discuss the catalytic events during
Complex I turnover in relation to their role in energy conversion and to the enzyme structure.
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1. Introduction: mitochondrial and bacterial respiratory
chains

Cell respiration is the most efficient energy-transforming sys-
tem in mitochondria and in many respiring bacteria. The process
couples the highly exergonic electron transfer (oxidation of respi-
ratory substrates) to the highly endergonic formation of ATP from
ADP and phosphate (often referred to as “ATP synthesis”; oxidative
phosphorylation) and some other types of cellular work. The two
general principles of the process are the following:

(i) The source of energy for metabolism is the redox reaction
between the electron donor and acceptor. The vast majority
of electron donors (respiratory substrates) are derived from
photosynthetically formed reduced organic compounds, e.g.
carbohydrates; for the aerobic life, the almost universal elec-
tron acceptor is molecular oxygen;

(ii) The physical link between redox and phosphorylation parts of
the process is the transmembrane electrochemical potential of
protons, Afiy+ (proton-motive force, or pmf; in certain special
cases in bacteria, also the gradient of Na* ions, Afiy,+). The
Afiy+ is established as a result of transmembrane transloca-
tion of H* by the respiratory complexes (Complexes I, Ill,and IV)
and consumed by H*- (or Na*-) motive ATP synthase. Since the
electrogenic nature of proton translocation, both electric (Ayr
[mV]) and chemical (pH gradient, 59 x ApH [mV] at +20°C)
components contribute to Afiy+. Although the two forms are
thermodynamically convertible, the primary form is, however,
the electric potential established between the two aqueous
compartments separated by the lipid bilayer membrane; the
formation of ApH requires work against buffering capacity of
both transmembrane compartments.

About 90% of ATP production in the cell comes from oxidative
phosphorylation coupled to cell respiration. Textbook values for
oxidation of 1 molecule of glucose in mammalian mitochondria
give 38 ATP molecules, 34 of which are formed by oxidative phos-
phorylation. (The real values may be slightly less due to the revised
mechanistic H*/P or P/e~ ratios for H*-ATPase Watt et al., 2010;
Wikstrém and Hummer, 2012.) Note that in respiring bacteria the
stoichiometries may differ significantly due to the variation in the
mechanistic H*/P ratio of H*-ATPase (Steigmiller et al., 2008; Lau
and Rubinstein, 2012).

Most of the redox energy entering aerobic metabolism is sup-
plied via NADH produced by the Krebs cycle (but also, to a lesser
degree, from fatty acid oxidation, protein degradation, and glycoly-
sis). The midpoint redox potential (Er, ) values for glucose and NADH
differ only slightly (see Table 1), so almost all energy is preserved
in the form of NADH (contribution from FADH; and succinate is
negligible, in comparison, from the point of view of energy conser-
vation). Energy provided from the oxidation of NADH by oxygen is
given by the difference between the respective Ey, of the electron
acceptor and donor!:

AEn ~ (+820mV) — (~320mV) = +1140 mV

1 All redox potentials quoted are expressed versus normal hydrogen electrode
(NHE) scale.

(pH 7, 1atm 0,). The respective standard free energy drop for this
reaction is given by

AG°(kJ/mol) = —n x 0.0961 x AEy,(mV)
or
AG°(meV) = —n x AERp(mV)

where n is the stoichiometric number of electrons participating
in the reaction. For the oxidation of one NADH molecule by O,
AG°=-119k]J/mol (Table 1). Taking into account the experimen-
tally measured value of ATP production in mitochondria (~2.27 ATP
per NADH Hinkle, 2005), this gives 52.5 kJ/mol per ATP molecule
(a typical literature value for the formation of 1 ATP molecule
from ADP and P; under “average” cellular condition is 57 kJ/mol).
For the lossless (ideal) electrochemical coupling, the electrogenic,
transmembrane H* translocation driven by a redox reaction with
standard free energy AG° causes standard electrochemical poten-
tial:

AG®
[Apg+ maxl(mV) = ‘—nl(mev) = |AEp|(mV)

giving 1.14V for the oxidation of one NADH molecule by O,. At
physiological conditions the value may differ due to the concentra-
tion ratio factors:

[electron donoreduced]
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or

- AG
|A/’LH+,max|(mV) = %(meV) = |AE,|(mV)

and for the oxidation of NADH it is less than the standard value;
however, keeping in mind that the electrical contribution in A i+
predominates, the transmembrane electric potential is still rather
large. Pure lipid is excellent electrical insulator; the resistance of a
typical artificial bilayer lipid membrane is ~1 GS2. Being directly
applied across the lipid bilayer membrane (average thickness,
defined as the distance between the acyl carbonyl groups, is 36 A)
such A supplies electric field of ~290kV x cm~!. However, in
biological membranes containing many membrane-embedded or
membrane-associated proteins, the tolerance of the bilayer to elec-
tric field, though dependent on the source of lipid, is typically much
weaker. For example, in mitochondria or Escherichia coli cells, a typ-
ical maximum Aus value sustained by the membrane ranges from
220 to 250 mV. At higher voltage the membrane loses its integrity
and its conductivity sharply rises leading to a short-circuit and elec-
trical damage. This poses a problem of efficient generation and use
of the electric field coupled to the respiratory redox process; an
obvious solution is to split the whole voltage span (1.14 V) into sev-
eral, mechanistically coupled voltage generators, each of which can
only generate smaller field. The latter principle is indeed realized in
the real respiratory chain (Rich and Maréchal, 2010; Jastroch et al.,
2010; Nicholls, 2010).

Mitochondrial respiratory electron transfer chain (Fig. 1) con-
sists of three enzymes catalyzing linear, sequential electron transfer
(eT) from NADH through ubiquinol (UQH;) and cytochrome (cyt) ¢
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