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Received in revised form 2 May 2012 a major component of this process dictating chromatin status and recruiting non-histone proteins in
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Available online 11 May 2012 complexes formed to “handle DNA”. In CRC, histone marks of aberrant acetylation and methylation levels

on specific residues have been revealed, along with a plethora of deregulated enzymes that catalyze these
reactions. Mutations, deletions or altered expression patterns transform the function of several histone-

’é?{:;gg; cancer modifying proteins, further supporting the crucial role of epigenetic effectors in CRC oncogenesis, being
Epigenetics closely associated to inactivation of tumor suppressor genes. Elucidation of the biochemical basis of these
Histone acetylation new tumorigenic mechanisms allows novel potential prognostic factors to come into play. Moreover, the
Methylation detection of these changes even in early stages of the multistep CRC process, along with the reversible
Tumorigenesis nature of these mechanisms and the technical capability to detect such alterations in cancer cells, places

this group of covalent modifications as a further potential asset for clinical diagnosis or treatment of
CRC. This review underlines the biochemistry of histone modifications and the potential regulatory role
of histone-modifying proteins in CRC pathogenesis, to date. Furthermore, the underlying mechanisms of
the emerging epigenetic interplay along with the chemical compounds that are candidates for clinical use
are discussed, offering new insights for further investigation of key histone enzymes and new therapeutic
targets.
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1. Introduction

Being one of the most common types of malignancy, along with
one of the most frequent etiologies of cancer mortality in both
genders worldwide, colorectal cancer (CRC) still presents a major
public health problem to confront and a rapidly evolving research
field to keep up with (Jemal et al,, 2011; Siegel et al., 2012). Nev-
ertheless, it is well established that sporadic and hereditary CRC
constitute the histological and clinical outcome of a multistage,
though hierarchically structured, genetic process characterized by
the sequential accumulation of genetic and epigenetic alterations
(Fearon and Vogelstein, 1990).

CRC genetic alterations present a well studied field over the
past three decades providing an overall paradigm of the multistep
carcinogenesis process. Driver mutations affect major intracellular
signaling pathways implicated in proliferation, differentiation, cell
adhesion and migration, apoptosis, DNA stability and repair (Saif
and Chu, 2010).

Focusing on epigenetic alterations, a recently evolving research
area, accumulating data indicate an additional trait of CRC patho-
genesis. The term epigenetics refers to heritable changes that
although not affecting DNA sequence, they play a critical regu-
latory role in gene expression. Epigenetic changes include DNA
methylation, loss of imprinting, post-translational histone mod-
ifications, nucleosome positioning, chromatin looping and small
non-coding RNAs interference (van Engeland et al., 2011). Among
these alterations, the most extensively characterized is aberrant
DNA methylation including both global DNA hypomethylation,
an age-dependent process with poor prognosis occurring at early
stages in CRC (Suzuki et al., 2006), and CpG island hypermethy-
lation, presenting an additional hit in the classic Knudson genetic
model (Knudson, 2001) for inactivation of tumor suppressor genes
(Herman and Baylin, 2003), with main example the mismatch
repair gene MutL homolog 1 (MLH1) implicated in CRC patho-
genesis (Herman et al., 1998). Although individually studied, a
complex interplay has emerged between DNA methylation and
histone modifications that is mediated by biochemical interac-
tions of histone and DNA methyltransferases (HMTs and DNMTs,
respectively) with the recruitment of histone deacetylases (HDACs)
(Cedar and Bergman, 2009; Tachibana et al., 2008; Zhao et al.,
2009). Taking all these into account, an additional epigenetic phe-
notype has been attributed to CRC that is critically regulated by
the post-translational modifications of histone residues, allowing
the generation of a corresponding multistep epigenetic CRC model,
with potential novel therapeutic targets.

The present review explores the biochemistry behind histone
modifications and the respective regulatory role of histone-
modifying proteins in CRC pathobiology. In addition, the under-
pinning mechanisms of the emerging epigenetic interplay along

with targeted therapy in research are discussed, providing new
insights for further investigation of pivotal histone enzymes and
new mechanisms in favor of pharmaceutical treatment. Although
the types of histone modifications will be described in separate sec-
tions for comprehensive purposes, one should bear in mind that
these changes and the underlying mechanisms take place simul-
taneously or in parallel and are exposed to a constant and mutual
regulation.

2. Biochemical basis of post-translational histone
modifications in CRC

The basic nucleosome unit is composed of four core histone pro-
teins, H2A, H2B, H3 and H4, that form an octamer around which
a segment of DNA winds with 147 base pairs in 1.67 left-handed
superhelical turns. Highly basic histone N-terminal domains are
able to protrude from the nucleosome establishing contact with
adjacent ones (Fig. 1). At least eight different types of modifica-
tions have been characterized on multiple sites of specific residues
of the “free” N-terminal domains, notably lysine (K) and arginine
(R). These include acetylation, methylation, phosphorylation, ubiq-
uitylation, sumoylation, ADP ribosylation, deimination and proline
isomerization. Acetylation and methylation constitute the vast
majority of known modifications, being mediated by a number of
specialized enzymes. Their functional role relies on the disruption
of chromatin contacts and recruitment of non-histone proteins,
thus defining chromatin’s proper structure and allowing protein
complex formation for DNA “handling” (Cosgrove et al., 2004;
Kouzarides, 2007). The emerging variability on the type of modi-
fied residue, the type and number of modifications, or the different
modifying proteins as well as the immediate interplay of these
changes, gives us a hint of the underlying complexity that this
mechanism involves.

In CRC, aberrant histone modification patterns have been
detected, being generated by a plethora of deregulated enzymes.
Mutations, deletions or altered expression profiles alter the func-
tion of several histone-modifying proteins, thus supporting the
major role of epigenetic effectors in CRC tumorigenesis (Ellis et al.,
2009). These events contribute to cancer initiation and progression
by altering the physiological levels of gene expression—-mostly by
inactivating tumor suppressor genes (Konishi and Issa, 2007)-and
by inducing genome instability due to direct effects in the higher
order of chromatin, chromosome condensation and mitotic dis-
junction (Bannister and Kouzarides, 2011). Consequently, a new
terminology, “histo-oncomodifications”, has evolved describing
the histone covalent alterations that have been linked to cancer
(Fullgrabe et al., 2011). The participation of these changes even in
early stages of oncogenesis, their reversible nature and the techni-
cal ability to detect such alterations in neoplasmatic cells places this
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